A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Béchu, N.

Paper Title Page
WEPC098 Development of Cryogenic Undulator CPMU at SOLEIL 2225
 
  • C. Benabderrahmane, P. Berteaud, N. Béchu, M.-E. Couprie, J.-M. Filhol, C. Herbeaux, C. A. Kitegi, J. L. Marlats, A. Mary, K. Tavakoli
    SOLEIL, Gif-sur-Yvette
 
  On SOLEIL at 2.75 GeV, producing hard X rays requires short period and small gap in-vacuum hybrid permanent magnet undulators. Besides, higher achieved peak magnetic field can be while operating at cryogenic temperature Tc (around 140 K). When cooling down the permanent magnets, the remanence Br increases down to a certain temperature at which the process is limited by the appearance of the Spin Reorientation Transition phenomenon. The coercivity is also increased at Tc which improves significantly the resistance to radiation. R&D studies, aims at replacing SmCo by NdFeB permanent magnets whose Br of 1.4 T, could enable to increase at least by 30% the peak magnetic field at Tc. Unfortunately such magnet grade can’t be heated to high temperature without degrading the magnetic properties, which limits the residual pressure that can be achieved. Temperature gradient and mechanical deformation are also technical issues. Different permanent magnet grades at Tc are characterized. Studies are also carried out on a small assembly of four periods. Residual pressures obtained with or without partial baking on standard U20 in-vacuum undulators are compared.  
THPP142 Vacuum Conditioning of the SOLEIL Storage Ring with Extensive Use of NEG Coating 3696
 
  • C. Herbeaux, N. Béchu, J.-M. Filhol
    SOLEIL, Gif-sur-Yvette
 
  The vacuum system of the SOLEIL storage ring is designed using a combination of standard pumps like Sputter Ion Pumps and Titanium Sublimation Pumps (TSP) and Non Evaporable Getter (NEG) coating. Following the ESRF results on low gap insertion device (ID) chambers, it was decided to use, in addition to the traditional pumps, NEG coating deposited by magnetron sputtering on extruded aluminium vessels. This has been applied in an extensive way to all the straight vessels of the storage ring that means quadrupole vessels and ID vessels, which represent about 56% of the circumference. The starting configuration of the SOLEIL vacuum system included all the NEG coated low gap ID chambers among which a 10.5 m long chamber. Conditioning of the vacuum system over an integrated beam dose of 500 A.h will be presented. The periodical re-activations of the TSP performed early 2007 improved significantly the conditioning rate. A comparison of the vacuum behaviour of two similar cells one with NEG coating and traditional pumping versus one with only NEG coating demonstrates the ability of the NEG coating to keep alone the pressure at low level.  
THPP147 NEG Coated Chambers at SOLEIL: Technological Issues and Experimental Results 3711
 
  • P. Manini, A. Bonucci, A. Conte, S. Raimondi
    SAES Getters S.p. A., Lainate
  • N. Béchu, C. Herbeaux
    SOLEIL, Gif-sur-Yvette
 
  The SOLEIL accelerator complex includes a 100 MeV LINAC pre-injector, a full energy booster synchrotron and a 2.75 GeV electron storage ring with a 354-meter circumference, which provides synchrotron light to 24 photon beam lines. SOLEIL is the first synchrotron facility specifically designed to make extensive use of Non Evaporable Getter (NEG) coating technology to improve the vacuum, reduce bremsstralhung radiation and boost beam performances. In fact, NEG coating of the straight parts of the vacuum system covers more than 50% of the overall storage ring surface and includes 110 quadrupole and sextupole chambers as well as several conductance limited narrow insertion devices. Use of such a large amount of NEG coated chambers has posed several challenges in term of coating technology, chamber testing, installation and machine commissioning. We report in the present paper main technological issues related to the chambers preparation, film deposition, quality control and characterization. Chambers installation in the main ring, conditioning and activation procedures as well as preliminary vacuum performances will be also discussed.