TUOAFI  —  Applications of Accelerators   (27-Jun-06   09:30—10:30)

Chair: H. Danared, MSL, Stockholm

   
Paper Title Page
TUOAFI01 Development for New Carbon Cancer-therapy Facility and Future Plan of HIMAC 955
 
  • K. Noda, T. Fujisawa, T. Furukawa, Y. Iwata, T. Kanai, M. Kanazawa, N. Kanematsu, A. Kitagawa, Y. Kobayashi, M. Komori, S. Minohara, T. Murakami, M. Muramatsu, S. Sato, E. Takada, M. Torikoshi, S. Yamada, K. Yoshida
    NIRS, Chiba-shi
  • C. Kobayashi, S. Shibuya, O. Takahashi, H. Tsubuku
    AEC, Chiba
  • Y. Sato, M. Tashiro, K. Yusa
    Gunma University, Heavy-Ion Medical Research Center, Maebashi-Gunma
 
  The first clinical trial with carbon beams generated from the HIMAC was conducted in June 1994. The total number of patients treated is now in excess of 2500 as of December 2005. Based on our 10 years of experience with the HIMAC, we have proposed a new carbon-ion therapy facility for widespread use in Japan. The key technologies of the accelerator and irradiation systems for the new facility have been developed since April 2004. The new carbon-therapy facility will be constructed at Gunma University from April 2006. As our future plan for the HIMAC, further, a new treatment facility will be constructed at NIRS from April 2006. The design work has already been initiated and will lead to the further development of the therapy with the HIMAC. The facility is connected with the HIMAC accelerator complex and has two treatment rooms with horizontal and a vertical beam-delivery systems and one room with a rotating gantry. We will report the development for new carbon therapy facility and the design study for new treatment facility with the HIMAC.  
slides icon Transparencies
TUOAFI02 Design of a Treatment Control System for a Proton Therapy Facility 958
 
  • J.E. Katuin, J.C. Collins, C. Hagen, W. Manwaring, P. Zolnierczuk
    IUCF, Bloomington, Indiana
 
  The IUCF Proton Therapy System (PTS)is designed by Indiana University and operated by the Midwest Proton Radiotherapy Institute (MPRI) to deliver proton radiation treatment to patients with solid tumors or other diseases susceptible to radiation. PTS contains three Treatment Systems, each consisting of four subsystems: Beam Delivery, Dose Delivery, Patient Positioning and Treatments Control. These systems are implemented using different operating systems, control software, and hardware platforms. Therefore, IUCF developed an XML network communication protocol so that subsystems could issue commands to and receive feedback and status from other subsystems over a local area network (LAN). This protocol was also applied to the MPRI clinical database used to access patient treatment plans. The treatment control system was designed so that a single user interface could be used to deliver proton therapy. The use of the XML and the LAN allowed the software of the treatment control system to be designed such that the various systems are treated as objects with properties and methods. This approach not only simplified the overall design of the treatment control system, it also simplified the effort required for software validation, testing, and documentation.  
slides icon Transparencies
TUOAFI03 Production of MeV Photons by the Laser Compton Scattering Using a Far Infrared Laser at SPring-8 961
 
  • H. Ohkuma, M. Shoji, S. Suzuki, K. Tamura, T. Yorita
    JASRI/SPring-8, Hyogo-ken
  • Y. Arimoto
    Osaka University, Osaka
  • M. Fujiwara, K. Kawase
    RCNP, Osaka
  • K. Nakayama, S. Okajima
    Chubu University, Kasugai, Aichi
 
  In order to produce MeV gamma-ray by the Laser Compton scattering (LCS), a high power optically pumped Far Infrared (FIR) laser has been developed at SPring-8. In the case of the SPring-8 storage ring, the momentum acceptance is so large (± 200 MeV) that the scattered electron is re-accelerated, then the stored beam is not lost by the LCS process. The beam diagnostics beamline is used to inject a FIR laser beam against 8-GeV stored electron beam and to extract MeV gamma-ray produced by LCS. The FIR laser system, gamma-ray production system, and measured gamma-ray spectrum will be presented. Future plans will also be introduced. In order to produce higher intense gamma-ray, we are constructing new gamma-ray production system at another beamline.  
slides icon Transparencies