
DESIGN OF A TREATMENT CONTROL SYSTEM FOR A PROTON THERAPY
FACILITY*

J. Katuin, J. Collins, C. Hagen, Wm. Manwaring, M. Wedekind & P. Zolnierczuk
Indiana University Cyclotron Facility, Bloomington, IN 47408, USA

Abstract
 The IUCF Proton Therapy System (PTS) is designed by
Indiana University and operated by the Midwest Proton
Radiotherapy Institute (MPRI) to deliver proton radiation
treatment to patients with solid tumors or other diseases
susceptible to radiation. PTS contains three Treatment
Systems, each consisting of four subsystems: Beam
Delivery, Dose Delivery, Patient Positioning and
Treatment Control. These systems are implemented using
different operating systems, control software, and
hardware platforms. Therefore, IUCF developed an XML
network communication protocol so that subsystems
could issue commands to and receive feedback and status
from other subsystems over a local area network (LAN).
This protocol was also applied to the MPRI clinical
database used to access patient treatment plans. The
treatment control system was designed so that a single
user interface could be used to deliver proton therapy.
The use of the XML and the LAN allowed the software of
the treatment control system to be designed such that the
various systems are treated as objects with properties and
methods. This approach not only simplified the overall
design of the treatment control system, it also simplified
the effort required for software validation, testing, and
documentation.

THE MPRI FACILITY
 The design and status of the PTS is reported elsewhere

[1]. A constant 208.4 MeV proton beam from the IUCF
K220 cyclotrons is transported to a Beam Dump via a
57m Trunk Line, as shown in Fig.1, and diverted on
demand to one of three Proton Therapy Treatment Rooms
via energy selection beam lines, each containing an
energy degrader. These lines transmit 65 to 208.4 MeV
protons to the three Treatment Rooms.
 Since MPRI clinical operation began in TR1 in
February, 2003, IUCF has constructed a second treatment
room (TR2), the subject of this paper, housing an IBA
360o rotating Gantry system [2]. The Gantry incorporates
an IUCF designed beam delivery nozzle containing a
compact combined function magnet for beam scanning to
deliver lateral beam distributions up to 30cm in diameter
and an energy stacking method to achieve range
modulations of up to 16 cm. A commercial six axis
industrial robot, identical to the one used in TR1, has
been adapted to the IBA Gantry system to position the
patient for treatment.

CONTROL SYSTEM OUTLINE
 From a physical perspective, PTS contains three
Treatment Systems (TS1, TS2, TS3), each of which
includes a Treatment Room, the beam line that feeds it, an
external control area and the equipment contained in
those areas. From a system perspective, each TS consists
of a Treatment Room Control System (TRCS), a Beam
Delivery System (BDS), a Dose Delivery System (DDS)

 Accelerator
Control Room

Figure 1. The MPRI facility showing the IUCF Cyclotrons, Trunk and ES lines, Treatment Rooms and Clinic.

 208 MeV
 Beam
 Dump

Energy Selection Beam Line (BDS)Fast Kicker Magnet

MPRI CLINIC

TR 3TR 2

Trunk
 Line

750 keV RFQ
 Pre-Injector

Injector
Cycl

208 MeV
Cyclotron

TR 1

___ __

* Support for this work is provided by the State of Indiana, Indiana University, Clarion Health, the DOE (Grant No. DE-FG-02000ER62966) and
the NIH (Grant No. C06 RR17407-01)

TUOAFI02 Proceedings of EPAC 2006, Edinburgh, Scotland

958 08 Applications of Accelerators, Technology Transfer and Industrial Relations
U01 Medical Applications

and a Patient Positioning System (PPS). (There are also a
few hardware-only subsystems that are not discussed
here.) In order to deliver a treatment and record results of
those treatments, each TS interfaces to the MPRI
information system that manages treatment plans: the
Treatment Planning Database (TPDB). TRCS is the
subsystem that retrieves a Treatment Plan, presents it to
the therapists and downloads parameters to the various
subsystems. Each TS is a distributed computing system
with connection supplied via TCP/IP over Ethernet.
Within each TS there are four different operating systems
and three implementation languages, a situation that arose
partly from design, partly from history.

COMMUNICATIONS STRATEGY
 To ensure reliability and accuracy in the transmission of
treatment parameters, the communications both within
each TS and between TS and TPDB were designed to use
an XML protocol to define the messaging running under
TCP/IP over an Ethernet LAN. Each TS subsystem uses
XML library routines available to the various operating
systems so as to:
1. Minimize programming time. Programmers call

library routines to parse messages reliably in order to
configure their system for treatment.

2. Minimize the software validation time by using
standard parsing libraries.

3. Minimize programmer learning time. A messaging
protocol is established so that communications
between systems are discussed in terms of function
calls. Therefore, if a system such as TRCS needs to
“call” a PRIME function in BDS, then the high level
design specifies a pseudo-function (see Figure 2 for
an example) hiding the implementation of the XML
message structure (see Figure 3).

 The message protocol uses a client-server model, with
TRCS being a client with respect to all other subsystems.
Each TS has its own separate network leg, firewalled off
from other TSs and from the outside world.
 Schema checking is implemented to validate each
message for structure and data type rules. Consequently,
software alerts a user if incorrect information is received
and moves to a “fail safe” condition. Schema checking is
done using .NET facilities in PPS and home-brewed code
in BDS, DDS and TRCS. All subsystems except PPS use
the expat library [3] to parse messages. After parsing, the
receiving subsystem tests that each parameter received in
a message falls within a range acceptable for that
parameter. Otherwise, the message is rejected.

Example - BDSPRIME (GANTRYANGLE)
 TRCS sends the Gantry Angle to BDS and requests a
final check of beam properties just before beam is
delivered (Prime operation). The BDS checks the legality
of the Gantry Angle and performs the Prime operation,
verifing that measured beam Range, Energy Spread and
Intensity meet the requested treatment values. It then
returns these measured values to TRCS. Figure 4 shows

the documentation the programmer uses. Figure 5 shows
the actual XML message created.

Parameter Format Definition
GantryAngle F5.1 Angle of Gantry in degrees

(0-359.9 degrees)
“???” indicates that the
angle is unknown.

Figure 2. Definition of the BDS PRIME Command.

<?xml version="1.0" encoding="US-ASCII"
standalone="yes" ?>
<PTSMESSAGE DateTime="2006-05-04T19:59:06"
Version="1.0">
<BDCS Source="TRCS" TS="2">
<BDSPRIME GantryAngle="90.0"/>
</BDCS></PTSMESSAGE>

Figure 3. Implementation of the BDS Prime
Command in XML.

 With schema checking, parameter range checking and
the implicit TCP/IP error detection, it was judged to be a
waste of time and bandwidth to implement any
handshaking in the message protocol. However, each
command message expects a prompt return message
containing status and parameter values, perhaps followed
by a delayed return indicating that a “slow” process has
succeeded or failed. The protocol requires that there be a
timeout applied to each prompt return. In the example
above, the first Return message from BDS indicates that
the message was received, successfully parsed and range-
checked. A second Return indicates whether the Prime
operation succeeded or failed and returns the measured
values to TRCS.

DESIGN OF TRCS
 The TRCS is designed to orchestrate the treatment
process by sending parameters and commands to the other
subsystems at appropriate times in the treatment process.
Both BDS and DDS obtain all their instructions and data
from TRCS, while PPS supports some user inputs. The
TRCS GUI is designed as the primary interface between
the medical user and the TS control system. TRCS is
programmed in C++ and runs a Linux Operating System
(OS) on a 2.8GHz Pentium 4, using NI cards [4] for I/O.
TRCS allows a user to do the following:

1. Select treatment plans for a given patient.
2. Download parameters for a selected treatment field to

TS subsystems.
3. Verify that all subsystesm are ready for treatment.
4. Be informed of the status of the other subsystems.
5. Check the validity of subsystem responses.
6. Start and stop treatments.
7. Send the results of a treatment to the TPDB.

Proceedings of EPAC 2006, Edinburgh, Scotland TUOAFI02

08 Applications of Accelerators, Technology Transfer and Industrial Relations
U01 Medical Applications

959

BDS
 BDS controls the beam line that transports beam from
the trunk line, through the gantry and into the nozzle.
BDS uses the same hardware and software as in the
cyclotron control system. While BDS supports a GUI
accessible by medical staff, the GUI is for display
purposes only. It is programmed in C and runs the
OpenVMS OS on an AlphaServer DS10, using VME as
its field bus. BDS performs the following:
1. Setup all beam line devices according to the

requested beam range (energy), including use of
hysteresis loops to set magnetic elements.

2. Monitor all beam line devices for deviations from
desired settings.

3. Perform the Prime operation that measures beam
Range, Energy Spread and Intensity.

4. Monitor beam intensity, terminating beam delivery if
intensity is too high.

5. Use steering loops to maintain constant beam
position and angle at the nozzle entrance.

DDS
 DDS controls devices on the nozzle (beam transport and
detection hardware closest to the patient) and measures
dose-related values. DDS implements the energy-stacking
scheme used to obtain uniform depth-dose distributions.
While DDS supports a GUI accessible by medical staff,
the GUI is for display purposes only. DDS is programmed
in C and runs the QNX OS. It runs on an 800MHz
Pentium 4 and uses VME as its field bus. DDS performs
the following:
1. Load, start and stop the wobbling magnet controller.
2. Prepare for energy-stacking at the specified beam

range and range spread.
3. Manipulate the
4. Read, display and record data from the beam

detectors in the nozzle.
5. Calculate and monitor beam properties (e.g., balance,

flatness, symmetry), terminating beam delivery if
any property exceeds predefined limits.

PPS
 PPS performs patient positioning operations. PPS
includes a robot [1] that moves the patient support device
into the treatment position. Because patient motion must
take the positions of many other movable devices into
consideration, PPS includes a motion interlock system.
PPS supports a GUI accessible to the medical staff which
is actively used while positioning and removing patients.
PPS is programmed in C#/.NET and runs the Windows
OS on a 2.8GHz Pentium 4 using the same NI cards as
TRCS. PPS allows a user to do the following:

1. Select, load and execute robot job files that specify

the treatment position and path to follow.
2. Rotate the gantry to the desired angle.
3. Extend and retract Digital Radiography X-Ray

detection panels.
4. Extend and retract panels that constitute the service

floor within the gantry.
5. Extend and retract the snout within the nozzle (by

communicating with DDS).

TESTING
Unit/Beta Testing (Bench Testing)
 Both software and hardware were tested at the
component level. Software testing involved identifying
“units” which were exposed to a battery of test cases, of
both “happy path” (inputs within expected limits) and
“unhappy path” style. Test frameworks were either
custom made (as with DDS and BDS) or used a package
framework such as CPPUnit (TRCS) or NUnit (PPS),
which provide library calls allowing a unit of software
(such as a Class), to be tested for errors and successes.
 Beta (integration) testing required the use of network
and hardware emulators to mimic missing hardware and
the other TS subsystems. These tests also use the happy
/unhappy path philosophy, with emphasis on seeing that
each subsystem fails in ways that do not endanger the
patient or attending staff.
 The network emulator developed for testing is called
NePTUNE. Written in Perl, this emulator can be
configured to act as a client or server and executes scripts
that cause NePTUNE to act like a given subsystem,
sending and receiving messages. Transmitted messages
may be specified to be legal or have various illegal
properties, testing the response of the target subsystem.
Received messages are displayed and can be examined
for proper construction and parameter values.
 The final testing stage involves witnessed tests using
written Test Procedures, often requiring between two and
four shifts (8 hour units) to perform. For each subsystem,
a software test is followed by a system test. In both cases,
the subsystem is as isolated, with as many inputs
emulated and outputs interpreted, as practical. Typically,
only beam-related inputs could not be emulated. Also,
typically, the software tests take significantly longer to
perform than the system tests.

CONCLUSIONS
 Using a distributed control system allowed us to
leverage our experience in beam line control (BDS), use
vendor supplied software packages (PPS) and apply a
realtime OS where needed (DDS). Defining the
messaging protocol allowed a clean separation of software
development tasks.
 Were we to redesign this control system, we would
retain its distributed nature, but use fewer OSs and
languages and redistribute responsibilities for device
motion interlocking.
 Finally, testing takes three longer than one thinks it will.

REFERENCES
[1] D.L. Friesel et al, WEPCH179, these proceedings.
[2] Ion Beam Associates, Chemin du Cyclotron, 3-1348

Louvain-la-Neuve, Belgium; www.iba.be.
[3] The Expat XML Parser, expat.sourceforge.net.
[4] National Instruments 6025 DAQ PCI Card.

TUOAFI02 Proceedings of EPAC 2006, Edinburgh, Scotland

960 08 Applications of Accelerators, Technology Transfer and Industrial Relations
U01 Medical Applications

