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Abstract 
   The IUCF Proton Therapy System (PTS) is designed by 
Indiana University and operated by the Midwest Proton 
Radiotherapy Institute (MPRI) to deliver proton radiation 
treatment to patients with solid tumors or other diseases 
susceptible to radiation. PTS contains three Treatment 
Systems, each consisting of four subsystems: Beam 
Delivery, Dose Delivery, Patient Positioning and 
Treatment Control. These systems are implemented using 
different operating systems, control software, and 
hardware platforms. Therefore, IUCF developed an XML 
network communication protocol so that subsystems 
could issue commands to and receive feedback and status 
from other subsystems over a local area network (LAN). 
This protocol was also applied to the MPRI clinical 
database used to access patient treatment plans. The 
treatment control system was designed so that a single 
user interface could be used to deliver proton therapy. 
The use of the XML and the LAN allowed the software of 
the treatment control system to be designed such that the 
various systems are treated as objects with properties and 
methods. This approach not only simplified the overall 
design of the treatment control system, it also simplified 
the effort required for software validation, testing, and 
documentation. 

THE MPRI FACILITY  
   The design and status of the PTS is reported elsewhere 

[1]. A constant 208.4 MeV proton beam from the IUCF 
K220 cyclotrons is transported to a Beam Dump via a 
57m Trunk Line, as shown in Fig.1, and diverted on 
demand to one of three Proton Therapy Treatment Rooms 
via energy selection beam lines, each containing an 
energy degrader.   These lines transmit 65 to 208.4 MeV 
protons to the three Treatment Rooms.   
   Since MPRI clinical operation began in TR1 in 
February, 2003, IUCF has constructed a second treatment 
room (TR2), the subject of this paper, housing an IBA 
360o rotating Gantry system [2]. The Gantry incorporates 
an IUCF designed beam delivery nozzle containing a 
compact combined function magnet for beam scanning to 
deliver lateral beam distributions up to 30cm in diameter 
and an energy stacking method to achieve range 
modulations of up to 16 cm. A commercial six axis 
industrial robot, identical to the one used in TR1, has 
been adapted to the IBA Gantry system to position the 
patient for treatment.   

CONTROL SYSTEM OUTLINE  
   From a physical perspective, PTS contains three 
Treatment Systems (TS1, TS2, TS3), each of which 
includes a Treatment Room, the beam line that feeds it, an 
external control area and the equipment contained in 
those areas. From a system perspective, each TS consists 
of a Treatment Room Control System (TRCS), a Beam 
Delivery System (BDS), a Dose Delivery System (DDS) 
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Figure 1. The MPRI facility showing the IUCF Cyclotrons, Trunk and ES lines, Treatment Rooms and Clinic.
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and a Patient Positioning System (PPS). (There are also a 
few hardware-only subsystems that are not discussed 
here.) In order to deliver a treatment and record results of 
those treatments, each TS interfaces to the MPRI 
information system that manages treatment plans: the 
Treatment Planning Database (TPDB). TRCS is the 
subsystem that retrieves a Treatment Plan, presents it to 
the therapists and downloads parameters to the various 
subsystems.  Each TS is a distributed computing system 
with connection supplied via TCP/IP over Ethernet. 
Within each TS there are four different operating systems 
and three implementation languages, a situation that arose 
partly from design, partly from history. 

COMMUNICATIONS STRATEGY 
   To ensure reliability and accuracy in the transmission of 
treatment parameters, the communications both within 
each TS and between TS and TPDB were designed to use 
an XML protocol to define the messaging running under 
TCP/IP over an Ethernet LAN. Each TS subsystem uses 
XML library routines available to the various operating 
systems so as to: 
1. Minimize programming time.  Programmers call 

library routines to parse messages reliably in order to 
configure their system for treatment. 

2. Minimize the software validation time by using 
standard parsing libraries. 

3. Minimize programmer learning time. A messaging 
protocol is established so that communications 
between systems are discussed in terms of function 
calls.  Therefore, if a system such as TRCS needs to 
“call” a PRIME function in BDS, then the high level 
design specifies a pseudo-function (see Figure 2 for 
an example) hiding the implementation of the XML 
message structure (see Figure 3). 

   The message protocol uses a client-server model, with 
TRCS being a client with respect to all other subsystems. 
Each TS has its own separate network leg, firewalled off 
from other TSs and from the outside world. 
   Schema checking is implemented to validate each 
message for structure and data type rules.  Consequently, 
software alerts a user if incorrect information is received 
and moves to a “fail safe” condition. Schema checking is 
done using .NET facilities in PPS and home-brewed code 
in BDS, DDS and TRCS. All subsystems except PPS use 
the expat library [3] to parse messages. After parsing, the 
receiving subsystem tests that each parameter received in 
a message falls within a range acceptable for that 
parameter. Otherwise, the message is rejected. 

Example - BDSPRIME (GANTRYANGLE) 
   TRCS sends the Gantry Angle to BDS and requests a 
final check of beam properties just before beam is 
delivered (Prime operation). The BDS checks the legality 
of the Gantry Angle and performs the Prime operation, 
verifing that measured beam Range, Energy Spread and 
Intensity meet the requested treatment values. It then 
returns these measured values to TRCS. Figure 4 shows 

the documentation the programmer uses.  Figure 5 shows 
the actual XML message created. 

 
Parameter Format Definition 
GantryAngle F5.1 Angle of Gantry in degrees 

(0-359.9 degrees) 
“???” indicates that the 
angle is unknown. 

Figure 2.  Definition of the BDS PRIME Command. 
 

 
<?xml version="1.0" encoding="US-ASCII" 
standalone="yes" ?> 
<PTSMESSAGE DateTime="2006-05-04T19:59:06" 
Version="1.0"> 
<BDCS Source="TRCS" TS="2"> 
<BDSPRIME GantryAngle="90.0"/> 
</BDCS></PTSMESSAGE> 
 
Figure 3. Implementation of the BDS Prime 
Command in XML. 
 
   With schema checking, parameter range checking and 
the implicit TCP/IP error detection, it was judged to be a 
waste of time and bandwidth to implement any 
handshaking in the message protocol. However, each 
command message expects a prompt return message 
containing status and parameter values, perhaps followed 
by a delayed return indicating that a “slow” process has 
succeeded or failed. The protocol requires that there be a 
timeout applied to each prompt return. In the example 
above, the first Return message from BDS indicates that 
the message was received, successfully parsed and range-
checked. A second Return indicates whether the Prime 
operation succeeded or failed and returns the measured 
values to TRCS. 

DESIGN OF TRCS 
   The TRCS is designed to orchestrate the treatment 
process by sending parameters and commands to the other 
subsystems at appropriate times in the treatment process.  
Both BDS and DDS obtain all their instructions and data 
from TRCS, while PPS supports some user inputs. The 
TRCS GUI is designed as the primary interface between 
the medical user and the TS control system. TRCS is 
programmed in C++ and runs a Linux Operating System 
(OS) on a 2.8GHz Pentium 4, using NI cards [4] for I/O. 
TRCS allows a user to do the following: 
 
1. Select treatment plans for a given patient. 
2. Download parameters for a selected treatment field to 

TS subsystems. 
3. Verify that all subsystesm are ready for treatment. 
4. Be informed of the status of the other subsystems. 
5. Check the validity of subsystem responses. 
6. Start and stop treatments. 
7. Send the results of a treatment to the TPDB. 
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BDS 
   BDS controls the beam line that transports beam from 
the trunk line, through the gantry and into the nozzle. 
BDS uses the same hardware and software as in the 
cyclotron control system. While BDS supports a GUI 
accessible by medical staff, the GUI is for display 
purposes only. It is programmed in C and runs the 
OpenVMS OS on an AlphaServer DS10, using VME as 
its field bus. BDS performs the following: 
1. Setup all beam line devices according to the 

requested beam range (energy), including use of 
hysteresis loops to set magnetic elements. 

2. Monitor all beam line devices for deviations from 
desired settings. 

3. Perform the Prime operation that measures beam 
Range, Energy Spread and Intensity. 

4. Monitor beam intensity, terminating beam delivery if 
intensity is too high. 

5. Use steering loops to maintain constant beam 
position and angle at the nozzle entrance. 

DDS 
   DDS controls devices on the nozzle (beam transport and 
detection hardware closest to the patient) and measures 
dose-related values. DDS implements the energy-stacking 
scheme used to obtain uniform depth-dose distributions. 
While DDS supports a GUI accessible by medical staff, 
the GUI is for display purposes only. DDS is programmed 
in C and runs the QNX OS. It runs on an 800MHz 
Pentium 4 and uses VME as its field bus. DDS performs 
the following: 
1. Load, start and stop the wobbling magnet controller. 
2. Prepare for energy-stacking at the specified beam 

range and range spread. 
3. Manipulate the  
4. Read, display and record data from the beam 

detectors in the nozzle. 
5. Calculate and monitor beam properties (e.g., balance, 

flatness, symmetry), terminating beam delivery if 
any property exceeds predefined limits. 

PPS 
   PPS performs patient positioning operations.  PPS 
includes a robot [1] that moves the patient support device 
into the treatment position. Because patient motion must 
take the positions of many other movable devices into 
consideration, PPS includes a motion interlock system. 
PPS supports a GUI accessible to the medical staff which 
is actively used while positioning and removing patients. 
PPS is programmed in C#/.NET and runs the Windows 
OS on a 2.8GHz Pentium 4 using the same NI cards as 
TRCS. PPS allows a user to do the following: 
 
1. Select, load and execute robot job files that specify 

the treatment position and path to follow. 
2. Rotate the gantry to the desired angle. 
3. Extend and retract Digital Radiography X-Ray 

detection panels. 
4. Extend and retract panels that constitute the service 

floor within the gantry. 
5. Extend and retract the snout within the nozzle (by 

communicating with DDS). 

TESTING 
Unit/Beta Testing (Bench Testing) 
   Both software and hardware were tested at the 
component level.  Software testing involved identifying 
“units” which were exposed to a battery of test cases, of 
both “happy path” (inputs within expected limits) and  
“unhappy path” style. Test frameworks were either 
custom made (as with DDS and BDS) or used a package 
framework such as CPPUnit (TRCS) or NUnit (PPS), 
which provide library calls allowing a unit of software 
(such as a Class), to be tested for errors and successes.   
   Beta (integration) testing required the use of network 
and hardware emulators to mimic missing hardware and 
the other TS subsystems. These tests also use the happy 
/unhappy path philosophy, with emphasis on seeing that 
each subsystem fails in ways that do not endanger the 
patient or attending staff. 
   The network emulator developed for testing is called 
NePTUNE.  Written in Perl, this emulator can be 
configured to act as a client or server and executes scripts 
that cause NePTUNE to act like a given subsystem, 
sending and receiving messages. Transmitted messages 
may be specified to be legal or have various illegal 
properties, testing the response of the target subsystem. 
Received messages are displayed and can be examined 
for proper construction and parameter values.  
   The final testing stage involves witnessed tests using 
written Test Procedures, often requiring between two and 
four shifts (8 hour units) to perform. For each subsystem, 
a software test is followed by a system test. In both cases, 
the subsystem is as isolated, with as many inputs 
emulated and outputs interpreted, as practical. Typically, 
only beam-related inputs could not be emulated.  Also, 
typically, the software tests take significantly longer to 
perform than the system tests. 

CONCLUSIONS 
   Using a distributed control system allowed us to 
leverage our experience in beam line control (BDS), use 
vendor supplied software packages (PPS) and apply a 
realtime OS where needed (DDS). Defining the 
messaging protocol allowed a clean separation of software 
development tasks. 
   Were we to redesign this control system, we would 
retain its distributed nature, but use fewer OSs and 
languages and redistribute responsibilities for device 
motion interlocking. 
   Finally, testing takes three longer than one thinks it will. 
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