THOBFI  —  Beam Instrumentation and Feedback   (29-Jun-06   11:30—12:30)

Chair: M.C. Ross, SLAC, Menlo Park, California

   
Paper Title Page
THOBFI01 A Sub 100 fs Electron Bunch Arrival-time Monitor System for FLASH 2781
 
  • F. Loehl, K.E. Hacker, F. Ludwig, H. Schlarb, B. Schmidt
    DESY, Hamburg
  • A. Winter
    Uni HH, Hamburg
 
  The stability of free-electron lasers and experiments carried out in pump-probe configurations depends sensitively on precise synchronization between the photo-injector laser, low-level RF-systems, probe lasers, and other components in the FEL. A measurement of the jitter in the arrival-time of the electron bunch with respect to the clock signal of a master oscillator is, therefore, of special importance. For this task, we propose an arrival-time monitor based on a beam pick-up with more than 10GHz bandwidth which permits measurements in the sub 100 fs regime. The RF-signal from the beam pick-up is sampled by an ultra-short laser pulse using a broad-band electro-optical modulator. The modulator converts the electron bunch arrival-time jitter into an amplitude modulation of the laser pulse. This modulation is detected by a photo detector and sampled by a fast ADC. By directly using the laser pulses from the master laser oscillator of the machine, any additional timing jitter is avoided. In this paper we present the layout of the system and first experimental results.  
slides icon Transparencies
THOBFI02 Measurement of the Beam Profiles with the Improved Fresnel Zone Plate Monitor 2784
 
  • H. Sakai, N. Nakamura
    ISSP/SRL, Chiba
  • H. Hayano, T. Muto
    KEK, Ibaraki
 
  We present the recent progress of the FZP (Fresnel Zone Plate) beam profile monitor constructed at KEK-ATF damping ring. This monitor based on an X-ray imaging optics with two FZPs*. In this monitor, the transverse electron beam image at bending magnet is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. Then the real-time and 2-dimentional transverse beam profiles can be obtained with non-destructive manner by using this monitor. The expected spatial resolution is less than 1 micro-meter. Recently, we install the new mechanical shutter to improve time resolution of the monitor and avoid the effects of the short-term movement of the beam or the monitor itself. By applying this shutter, the shutter opening time was reduced less than 1ms and the beam profile could be measured more accurately. In this paper, we report the new shutter performance and the measurement results of beam profiles by the improved FZP beam profile monitor.

*K. Iida, et al. Nucl. Instrum. Meth. A 506 (2003) 41-49.

 
slides icon Transparencies
THOBFI03 Record-high Resolution Experiments on Comparison of Spin Precession Frequencies of Electron Bunches Using the Resonant Depolarization Technique in the Storage Ring 2787
 
  • S.A. Nikitin, O. Anchugov, V.E. Blinov, A. Bogomyagkov, V.P. Cherepanov, G.V. Karpov, V. Kiselev, E. Levichev, I.B. Nikolaev, A.A. Polunin, E. Shubin, E.A. Simonov, V.V. Smaluk, M.V. Struchalin, G.M. Tumaikin
    BINP SB RAS, Novosibirsk
 
  The opportunity of performing an experiment on high precision comparison of the electron and positron anomalous magnetic moments following the VEPP-2M experiment is under study at the VEPP-4M storage ring. The record accuracy of 2x10-8 was obtained for comparison of spin precession frequencies in the experiment on resonant depolarization with simultaneously circulating electron bunches, two of them polarized and one unpolarized. It is the first time when the spreading of the spin precession frequency line (~5x10-7,) due to scattering of particle trajectories about the equilibrium orbit in a non-linear field of the storage ring, was presumably observed in experiments. We proposed and realized an RF scheme for controlled separation of the spin precession frequencies of two electron bunches; the first measurements using this scheme were made.  
slides icon Transparencies