04 Hadron Accelerators

A14 Advanced Concepts

Paper Title Page
TUPLS081 Flat Beams and Application to the Mass Separation of Radioactive Beams 1687
 
  • P. Bertrand
    GANIL, Caen
  • J.-L. Biarrotte
    IPN, Orsay
  • D. Uriot
    CEA, Gif-sur-Yvette
 
  The notion of flat beam is now well established and has been proven theoretically and experimentally with applications for linear colliders. In this paper, we propose a new and simple demonstration of the "flat beam theorem", and a possible application in the frame of radioactive ion beams (RIB) production. It consists in using a magnetized multi-specie heavy ion beam extracted from a high frequency ECR source, decoupling the transverse phase planes in such a way to obtain a very small emittance in the horizontal one, and using a dipole to separate the isotopes. A design of such a transport and separation line will be proposed and commented.  
TUPLS082 The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) 1690
 
  • L.P. Chau, O. Meusel, U. Ratzinger, A. Schempp, K. Volk
    IAP, Frankfurt-am-Main
  • M. Heil
    FZ Karlsruhe, Karlsruhe
 
  About 40ns long proton pulses with an energy of 120keV and currents of up to 200mA will be produced at the 150kV high current injector with a rep.rate of up to 250kHz. The main acceleration will be done by a 175MHz-RFQ. After this section the proton bunches will have an energy of about 1.7MeV. A 4-gap cavity will allow for an energy increase up to 2.2MeV.In order to get 1ns short pulses at the Li-7-Target we propose a buncher-system of the Mobley-Type*, whereby periodic deflection at one focus of a dipole-magnet guides the bunche train from the linac on different paths to the other focus, where the n-production traget is located in the time focus.By 7Li(p,n)B·107 reactions low-energy neutron bunches will be produced with an averaged integrated flux-density of 4*107/(cm2 s) at a distance of 0.4m. The upper limit for the neutron spectra will be 500keV. The main challange with respect to this buncher is the strong space charge action, which has to be treated by careful particle simulations. FRANZ is among other duties well suited for (n,gamma)-cross-sectional measurements with astrophysical relevance**/***. It is characterised by high n-intensities and by its pulse-structure.

*Phys. Rev. 88(2), 360-361 (1951). **Phys. Rev. C 71, 025803 (2005).***Phys. Rev. Lett. 94, 092504 (2005).

 
TUPLS083 A Low Energy Accumulation Stage for a Beta-beam Facility 1693
 
  • A. Källberg, A. Simonsson
    MSL, Stockholm
  • M. Lindroos
    CERN, Geneva
 
  The EU supported EURISOL Design Study encompasses a beta-beam facility for neutrino physics. Intense electron (anti-)neutrino beams are in such a machine generated through the decay of radioactive ions in a high energy storage ring. The two main candidate isotopes for the generation of a neutrino and an anti-neutrino beam are 6He2+ and 18Ne10+. The intensities required are hard to reach, in particular for the neon case. A possible solution to increase the intensity is to use an accumulator ring with an electron cooler. Critical parameters such as cooling times and current limitations due to space charge and tune shifts are presently being optimized. We will in this presentation give an overview of the low energy accumulation stage and review recent work on this option.  
TUPLS084 Estimation of Decay Losses and Dynamic Vacuum for the Beta-beam Accelerator Chain 1696
 
  • M. Benedikt, A. Fabich
    CERN, Geneva
  • M. Kirk, C. Omet, P.J. Spiller
    GSI, Darmstadt
 
  The beta-beam is based on the acceleration and storage of radioactive ions. Due to the large number of ions required and their relatively short lifetime, beam losses are a major concern. This paper estimates the decay losses for the part of the accelerator chain comprising the CERN PS and SPS machines. For illustration purposes, the power deposition in these accelerators is compared to that expected for nominal CNGS proton operation. The beam losses induced vacuum dynamics is simulated and the consequences for machine operation are discussed.  
TUPLS085 Stacking Simulations in the Beta-beam Decay Ring 1699
 
  • S. Hancock
    CERN, Geneva
  • A. Chancé
    CEA, Gif-sur-Yvette
 
  The so-called beta-beam concept for accelerator-driven neutrino experiments envisages the production of a pure beam of electron neutrinos (or their antiparticles) through the beta-decay of radioactive ions circulating in a high-energy storage ring. An unprecedented number of ions must be collected in the decay ring and maintained in a few short bunches. Stacking is unavoidable to match the available source rates with this demand. A new stacking method makes use of off-momentum injection into the decay ring to approach the circulating beam without requiring ultra-fast injection elements, rotation in the longitudinal plane to bring the fresh bunches onto the central orbit and asymmetric merging to transport these ions into the centre of the large stack. Simulation results are presented for the complete repetitive stacking process for two candidate ion species of significantly different charge-to-mass ratio.