A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Xia, G.X.

Paper Title Page
MOPLS099 A Study of Failure Modes in the ILC Main Linac 789
 
  • D. Schulte, P. Eliasson, A. Latina
    CERN, Geneva
  • Eckhard. Elsen, D. Kruecker, F. Poirier, N.J. Walker, G.X. Xia
    DESY, Hamburg
 
  Failures in the ILC can lead to beam loss or even damage the machine. Also failures that do not lead to beam loss can affect the luminosity performance, in particular since some time is required to recover from them. In the paper a number of different failures is being investigated and the impact on the machine performance is being studied.  
MOPLS133 Preliminary Studies of Ion Effects in ILC Damping Rings 867
 
  • G.X. Xia, Eckhard. Elsen
    DESY, Hamburg
 
  Ion effects are potentially detrimental to the performance of the damping rings for the International Linear Collider (ILC). In this paper, the ion effects in the damping rings of ILC are briefly reviewed. Fast beam-ion instability (FBII) is studied in the linear regime. The growth rates and the beam blowups due to FBII are analytically calculated and compared for two variants of the ILC damping ring designs (OCS and TESLA) and discussed as a function of the vacuum pressure. Finally, some detailed simulation results are also presented.  
TUPLS003 A Perfect Electrode to Suppress Secondary Electrons inside the Magnets 1489
 
  • L. Wang, M.T.F. Pivi
    SLAC, Menlo Park, California
  • H. Fukuma, S.-I. Kurokawa
    KEK, Ibaraki
  • G.X. Xia
    DESY, Hamburg
 
  Electron cloud due to multipacting in the positron ring of B-factories is one of the limitations on the machine performance. Electron cloud in the drift region can be suppressed by solenoid. However, solenoid doesn't work inside a magnet. Numerical studies show that there is strong multipacting in the dipole magnet of the B-factory positron ring. Electrons also can be trapped inside quadrupole and sextupole magnets. The electron cloud from the dipole magnet and wiggler in the positron damping ring of the ILC is a critical limitation on the choice of damping ring circumference, which directly results in a choice of two 6km rings as the baseline for the positron damping ring. Various electrodes have been studied using the program CLOUDLAND. Our studies show that a wire type of electrode with a few hundred voltages works perfectly to kill the secondary electrons inside various magnets.