A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wolski, A.

Paper Title Page
WEPCH060 Linear and Nonlinear Coupling Using Decoupling Transformations 2059
 
  • A. Wolski, A. Sessler
    LBNL, Berkeley, California
 
  Linear coupling in a storage ring is conveniently analyzed in terms of transformations that put the single-turn map into block-diagonal form. Such a transformation allows us to define new variables, in which the dynamics are uncoupled. Thus, for example, the symplectic conditions are simply that the phase area in each of the uncoupled variables is preserved. In principle, a similar approach may be taken to nonlinear coupling; we discuss such an approach in this paper, giving some simple illustrations of the ideas, based on the well-known techniques of normal form analysis. We also discuss some obstacles to finding a nonlinear decoupling transformation in the general case.  
WEPCH146 Intrabeam Scattering Studies for the ILC Damping Rings Using a New Matlab Code 2266
 
  • I. Reichel, A. Wolski
    LBNL, Berkeley, California
 
  A new code to calculate the effects of intrabeam scattering (IBS)has been developed in Matlab based on the approximation suggested by K. Bane*. It interfaces with the Accelerator Toolbox** but can also read in lattice functions from other codes. The code has been benchmarked against results from other codes for the ATF*** that use this approximation or do the calculation in a different way. The new code has been used to calculate the emittance growth due to intrabeam scattering for the lattices currently proposed for the ILC Damping Rings, as IBS is a concern, especially for the electron ring. A description of the code and its user interface, as well as results for the Damping Rings, will be presented.

*K. Bane, in Proceedings of EPAC2002, p.1443. **A. Terebilo, Accelerator Toolbox for MATLAB, SLAC-PUB-8732 and www-ssrl.slac.stanford.edu/at/. ***K. Kubo et al. PhysRevST AB.8.081001 (2005).

 
WEPCH150 The Accelerator Markup Language and the Universal Accelerator Parser 2278
 
  • D. Sagan, M. Forster
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • D.A. Bates, A. Wolski
    LBNL, Berkeley, California
  • T. Larrieu, Y. Roblin
    Jefferson Lab, Newport News, Virginia
  • T.A. Pelaia
    ORNL, Oak Ridge, Tennessee
  • S. Reiche
    UCLA, Los Angeles, California
  • F. Schmidt
    CERN, Geneva
  • P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • N.J. Walker
    DESY, Hamburg
 
  A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.  
MOPLS137 Tracking Studies to Determine the Required Wiggler Aperture for the ILC Damping Rings 879
 
  • I. Reichel
    LBNL, Berkeley, California
  • A. Wolski
    Liverpool University, Science Faculty, Liverpool
 
  The injection efficiency of an ILC damping ring is closely tied to its acceptance. To maximize both, one wants a physical aperture as large as possible in the wiggler magnets, as these are the limiting physical apertures in the ring. On the other hand, a small aperture in the wiggler magnets is needed to achieve the required field profile, a high magnetic field that is very linear over the whole physical aperture of the magnet. Tracking studies were done for all proposed ILC damping ring lattices to determine their required apertures. Although a half-aperture of 8 or 10 mm had been proposed, our studies showed that, for most lattices, a 16 mm half-aperture is required. (For some lattices a 12 mm half aperture might suffice.) We present here the results of our studies, which led to adopting a 16 mm half-aperture in the current ILC damping ring baseline design.  
MOPLS138 Space Charge and Equilibrium Emittances in Damping Rings 882
 
  • M. Venturini
    LBNL, Berkeley, California
  • K. Oide
    KEK, Ibaraki
  • A. Wolski
    Liverpool University, Science Faculty, Liverpool
 
  The unusual combination of small beam size and long ring circumference may cause space charge to have noticeable effects on the beam dynamics of the ILC (International Linear Collider) damping rings. One possible consequence is a modification of the vertical equilibrium emittance resulting from a non-ideal lattice. One simple way to account for this effect is to model space charge in the linear approximation within the framework of Oide's envelope (or Chao's matrix) formalism, whis is commonly used to calculate equilibrium emittances in lepton storage rings. However, this model would likely overestimate the effect as a linear approximation for space charge is accurate only in a small neighborhood of a bunch center. For a more accurate modelling, we propose to make use of Sacherer's envelope equations consisting of a closed set of equations for the second moments of a beam distribution that account for the nonlinear dependence of the space-charge force. Here we will illustrate how Sacherer's equations can be combined with Oide's formalism and apply the result to the ILC damping rings.  
MOPLS139 Choosing a Baseline Configuration for the ILC Damping Rings 885
 
  • A. Wolski
    Liverpool University, Science Faculty, Liverpool
  • J. Gao
    IHEP Beijing, Beijing
  • S. Guiducci
    INFN/LNF, Frascati (Roma)
 
  The damping rings for the International Linear Collider must be capable of accepting large beams from the electron and positron sources, and producing highly damped beams meeting demanding stability specifications, at the machine repetition rate of 5 Hz. Between March and November 2005, a program of studies was undertaken by an international collaboration of 50 researchers to compare a number of configuration options, including ring circumferences between 3 and 17 km. Here, we outline the studies and discuss the principal considerations in the choices of the baseline and alternative damping ring configurations.  
WEPCH103 Ion Effects in the Electron Damping Ring of the International Linear Collider 2155
 
  • L. Wang, T.O. Raubenheimer
    SLAC, Menlo Park, California
  • A. Wolski
    Liverpool University, Science Faculty, Liverpool
 
  Ion-induced beam instabilities and tune shifts are critical issues for the electron damping ring of the International Linear Collider (ILC). To avoid conventional ion trapping (multi-turn trapping), a long gap is introduced in the electron beam by omitting a number of successive bunches out of a long train. However, the beam can still suffer from the fast ion instability (FII), driven by ions that last only for a single passage of the electron bunches. Our study shows that the ion effects can be significantly mitigated by using multiple gaps, so that the stored beam consists of a number of relatively short bunch trains. The ion effects in the ILC damping rings are investigated using both analytical and numerical methods.  
THPCH075 Simulation of the Electron Cloud for Various Configurations of a Damping Ring for the ILC 2958
 
  • M.T.F. Pivi, T.O. Raubenheimer, L. Wang
    SLAC, Menlo Park, California
  • K. Ohmi
    KEK, Ibaraki
  • R. Wanzenberg
    DESY, Hamburg
  • A. Wolski
    Liverpool University, Science Faculty, Liverpool
  • F. Zimmermann
    CERN, Geneva
 
  In the beam pipe of the Damping Ring (DR) of the International Linear Collider (ILC), an electron cloud may be first produced by photoelectrons and ionization of residual gasses and then increased by the secondary emission process. This paper reports about the work that has been done by the electron cloud assessment international task force group for the recommendation of the ILC Damping Rings baseline design, made in November 2005. We have carefully estimated the secondary electron yield (SEY) threshold for electron cloud build-up and estimated the related single- and coupled-bunch instabilities that can be caused by the presence of electron cloud as a function of beam current and surface properties, for a variety of optics designs. The result of these studies was an important consideration in the choice of a 6-km design for the ILC damping rings. On the basis of the theoretical and experimental work, the baseline configuration specifies a pair of damping rings for the positron beam to mitigate the effects of the electron cloud.  
THPLS113 Design of a Fast Extraction Kicker for the Accelerator Test Facility 3544
 
  • S. De Santis, A. Wolski
    LBNL, Berkeley, California
  • M.C. Ross
    SLAC, Menlo Park, California
 
  We present a study for the design of a fast extraction kicker to be installed in the Advanced Test Facility ring. The purpose of the project is to test the technologies to be used in the design of the extraction kickers for the ILC damping rings. The kicker's rise and fall times are important parameters in the design of the damping rings, as they limit the minimum distance between bunches and ultimately define a lower boundary for the ring length. We propose a stripline kicker composed of several 20-cm long sections, grouped in two locations in the ATF damping ring. An analytical study of the kicker's parameters and computer simulations using Microwave Studio* point out the strict requirements on the pulsers, in order to be able to satisfy the design parameters.

*http://www.cst.com