A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wesolowski, P.

Paper Title Page
TUPCH032 Precise Measurements of the Vertical Beam Size in the ANKA Storage Ring with an In-air X-ray Detector 1073
 
  • A.-S. Müller, I. Birkel, E. Huttel, P. Wesolowski
    FZK, Karlsruhe
  • K.B. Scheidt
    ESRF, Grenoble
 
  A major part of the X-rays generated in the ANKA dipole magnets is unused by the experimental beamlines and is, on a number of dipoles, absorbed in a conical shaped Copper absorber. The 8 mm thickness that it presents lets a tiny fraction of the hard X-rays above 70KeV enter the free air space behind it. The transmitted power of only a few uW/mrad hor. is sufficient to be detected, with sub-second measurement time, by a novel In-Air X-ray detector. This extremely compact and low-cost device is situated just behind the absorber. The design, developed and in use at the ESRF, is based on a Cadmium Tungstenate (CdWO4) scintillator converting X-rays into visible light that is collected and focused onto a commercial CCD camera. Since the small vertical divergence of the high energy photons and the distance of the detector from the source point are known, it is possible to derive the vertical electron beam size with a high intrinsic precision. This paper presents results of beam size measurements as a function of various ANKA machine parameters, that illustrates the great diagnostic potential of this type of detector for a 2.5GeV medium energy light source like ANKA.  
THPCH039 Beam Studies with Coherent Synchrotron Radiation from Short Bunches in the ANKA Storage Ring 2868
 
  • A.-S. Müller, I. Birkel, S. Casalbuoni, B. Gasharova, E. Huttel, Y.-L. Mathis, D.A. Moss, P. Wesolowski
    FZK, Karlsruhe
  • C. J. Hirschmugl
    UWM, Milwaukee, Wisconsin
 
  In the ANKA storage ring it is possible to store bunches with RMS lengths of the order of 1 ps using a dedicated optics with reduced momentum compaction factor. For short bunch operation a beam energy of 1.3 GeV is chosen as a trade-off between low energy longitudinal instabilities and the increase in natural bunch length with energy. At this medium energy (the energy range of the ANKA storage ring is 0.5 to 2.5 GeV) steady state emission of coherent synchrotron radiation is observed by the ANKA-IR beamline below the threshold current defined by the micro-bunching instability. At lower beam energies where the natural bunch length is significantly shorter, bursts of coherent synchrotron radiation are detected in spite of the longitudinal oscillation. The far infrared spectrum is sensitive to the dynamics of the charge distribution generating the radiation. Measurements of the frequency spectrum of the infrared detector signal add information on bunch dynamics. This paper gives an overview of the studies performed at the ANKA storage ring.  
THPLS022 Radiation Dose Related to ANKA Operation Mode 3323
 
  • I. Birkel, MH. Hagelstein, E. Huttel, A.-S. Müller, P. Wesolowski
    FZK, Karlsruhe
 
  Radiation doses in the ANKA hall are measured by area monitoring and Albedo dosimeters. In August 2004 the machine optics was replaced by a new optics with reduced emittance and higher brightness. Measurements of the beam lifetime and the related radiation doses show a strong correlation between the operation mode of the machine and the dose distribution in the hall.