A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ueda, T.

Paper Title Page
WEPCH169 Alternating Phase Focused IH-DTL for Heavy-ion Medical Accelerators 2328
 
  • Y. Iwata, T. Fujisawa, T. Furukawa, S. H. Hojo, M. Kanazawa, N. M. Miyahara, T. Murakami, M. Muramatsu, K. Noda, H. Ogawa, Y. S. Sakamoto, S. Yamada, K. Yamamoto
    NIRS, Chiba-shi
  • T. Fujimoto, T. Takeuchi
    AEC, Chiba
  • T. Mitsumoto, H. Tsutsui, T. Ueda, T. Watanabe
    SHI, Tokyo
 
  Tumor therapy using HIMAC has been performed at NIRS since June 1994. With the successful clinical results over more than ten years, a number of projects to construct these complexes have been proposed over the world. Since existing heavy-ion linacs are large in size, the development of compact linacs would play a key role in designing compact and cost-effective complexes. Therefore, we developed an injector system consisting of RFQ and Interdigital H-mode (IH) DTL having the frequency of 200 MHz. The injector system can accelerate carbon ions up to 4.0 AMeV. For the beam focusing of IH-DTL, the method of Alternating Phase Focusing (APF) was employed. With the IH structure and rather high frequency, the cavity size is compact; the radius is 0.4 m, and lengths of RFQ and IH-DTL are 2.5m and 3.5m respectively. The fabrication of RFQ was completed, and we succeeded to accelerate carbon ions with satisfactory performances. For IH-DTL, the full-scale model was first fabricated. With the encouraging result* of its electric field measurement, we constructed IH-DTL and beam acceleration tests will be performed in March 2006. We will present the performances of the entire injector system.

*Y. Iwata et al., Nucl Instr. & Meth in Phys. Res. A (submitted).

 
WEPLS053 RF Design of a Cartridge-type Photocathode RF Gun in S-band Linac 2499
 
  • H. Moritani, Y. Muroya, A. Sakumi, T. Ueda, M. Uesaka
    UTNL, Ibaraki
  • H. Hanaki, N. Kumagai, S. Suzuki, H. Tomizawa
    JASRI/SPring-8, Hyogo-ken
  • J. Sasabe
    Hamamatsu Photonics K.K., Hamakita, Shizuoka
  • J. Urakawa
    KEK, Ibaraki
 
  A cartridge-type photocathode RF gun is under development in collaboration with SPring-8 and Hamamatsu Photonics. Each type of cathode (Cs2Te, Mg, diamond, Ag-Cs-O) is sealed in a cartridge-type vacuum tube. Several tubes can be installed in a vacuum chamber. The cathode in the tube is inserted into a center hole in the back plate of the RF gun by a vacuum manipulator. These cartridge-type photocathodes with high QE or sensitivity for visible lights, which are prepared in a factory, can be used for a long time without vacuum breaking. Since a load-lock system for forming a new high QE film is not needed, the cartridge-type RF gun becomes compact. We are going to introduce this cartridge-type system to our linac with the BNL-GUN-IV RF gun this summer. Now, we are calculating the gun parameters of the transmission cavity which has a back plate with a center hole 8mm in diameter with SUPERFISH and simulating the beam dynamics after modifying the beam line to install the system with PARMELA. We aim to use reliable Mg and high-QE Cs2Te and try diamond and Ag-Cs-O for radiation chemistry applications. The detailed numerical design and construction will be presented.