A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tobiyama, M.

 
Paper Title Page
MOPLS033 Beam-beam Limit and Feedback Noise 619
 
  • K. Ohmi, Y. Funakoshi, S. Hiramatsu, K. Oide, M. Tobiyama
    KEK, Ibaraki
 
  Beam-beam interaction is strongly nonlinear, therefore particles in the beam experience chaotic motion. A small noise can be enhanced by the chaotic nature, with the result that unexpected emittance growth can be observed. We study the noise of transverse bunch by bunch feedback system and related luminosity degradation. Similar effects caused by crab cavity noise is also discussed.  
TUPCH057 A Diagnostic System for Beam Abort at KEKB 1139
 
  • H. Ikeda, K. Akai, J.W. Flanagan, T. Furuya, S. Hiramatsu, M. Suetake, Y. Suetsugu, M. Tobiyama, T. Tsuboyama
    KEK, Ibaraki
  • S. Stanic
    Tsukuba University, Ibaraki
 
  A controlled beam abort system has been installed at KEKB for the protection of the hardware components of the accelerator and detector from damage by ampere-class beam currents. In order to identify the reason for each abort and optimize the abort system to handle each type of problem as well as improve machine operation, a diagnostic system has been developed. Fast signals, such as beam currents, accelerating voltages of the RF cavities and beam loss monitor signals from PIN photo-diodes are recorded and analyzed by a data logger system with a high sampling rate at the moment of each abort. Beam oscillations, radiation dose at the detector and vacuum pressure are also examined to classify the reasons for beam loss and aborts. Statistics and typical examples of these aborts will be discussed.  
WEOFI01 Beam Dynamics Measurements in the Vicinity of a Half-integer Resonance 1902
 
  • T. Ieiri, J.W. Flanagan, H. Fukuma, H. Ikeda, Y. Ohnishi, K. Oide, M. Tobiyama
    KEK, Ibaraki
 
  The operating point of the betatron tune set near a half-integer is a crucial parameter to make high luminosity in electron/positron ring colliders. Dynamic beam-beam effects would change the optics parameters of the colliders, depending on the betatron tune and the beam-beam parameter. On the other hand, existence of the half-integer stopband makes the beam unstable. Therefore, beam behavior near a half-integer might provide interesting issues from the viewpoint of beam dynamics. We measured a frequency response of the beam across a half-integer for measuring the betatron tune at KEKB. A sharp spike just at a half-integer was observed in the tune spectrum. We believe that the spectrum would be a nonlinear resonance caused by some off-momentum particles in a bunch, not by a coherent motion of a whole bunch. The horizontal beam size measured using a synchrotron radiation monitor indicated a slight increase when the tune approached a half-integer. The variations in the beam size are discussed, considering both dynamic beam-beam effects and a beta beat due to the half-integer stopband.  
slides icon Transparencies
WEPCH078 Measurement of Wake Effects by Means of Tune Shift in the KEKB Low-Energy Ring 2101
 
  • T. Ieiri, H. Fukuma, Y. Ohnishi, M. Tobiyama
    KEK, Ibaraki
 
  The electron cloud produced by the positron beam induces single-bunch and coupled-bunch wakes, in addition to a tune shift. Effects of the dipole wake-field including the electron cloud were tried to measure in the KEKB Low Energy Ring. A test bunch was placed behind a bunch-train of the positron beam, even though a test bunch itself might interact with the remaining electron cloud. We measured a current-dependent tune-shift of a test bunch under constant train-current, while changing the bucket position of a test bunch. The tune shift indicated a strong defocusing field, however, tended to a focusing field when a test bunch approached a train with high train-current. The results are discussed, considering variations of the electron cloud density.  
THPCH050 Further Studies on Betatron Sidebands due to Electron Clouds 2898
 
  • J.W. Flanagan, H. Fukuma, Y. Funakoshi, S. Hiramatsu, T. Ieiri, H. Ikeda, K. Ohmi, K. Oide, M. Tobiyama
    KEK, Ibaraki
 
  We have observed vertical betatron sidebands in the transverse beam spectra of positron bunches at the KEKB LER which are associated with the presence of electron clouds in single-beam studies*, and which are also associated with a loss of luminosity when the KEKB beams are in collision**. The sidebands may be signals of a fast head-tail instability due to short-range wakes within the electron cloud, providing a diagnostic for exploring the mechanism for transverse beam blow-up due to electron clouds. We report here on further studies on the behavior of the sidebands under varying beam conditions, including varying initial beam size below the beam blow-up threshold, chromaticity, RF voltage and fill pattern.

*J. W. Flanagan et al. PRL 94, 054801 (2005).**J. W. Flanagan et al. Proc. PAC05, p. 680 (2005).

 
THPCH051 The Effect of the Solenoid Field in Quadrupole Magnets on the Electron Cloud Instability in the KEKB LER 2901
 
  • H. Fukuma, J.W. Flanagan, T. Kawamoto, T. Morimoto, K. Oide, M. Tobiyama
    KEK, Ibaraki
  • F. Zimmermann
    CERN, Geneva
 
  The electron cloud instability which causes vertical beam blowup in the KEKB LER is largely suppressed by applying a weak solenoid field to vacuum chambers in the drift region. However the blowup is still observed when the bunch spacing is reduced to 3.27 rf buckets or shorter. A question is where the remaining electron clouds are. To investigate the electron clouds in the quadrupole magnets, solenoids made of flat cables were developed and installed in 88 quadrupole magnets. The field strength of the solenoid is 17 Gauss. The effect of the solenoid field on the blowup is now under beam study. So far no clear effect of the solenoids on the luminosity and the sideband accompanied by the blowup is found. We report on the solenoid system, the results of the experiments and comparison of the experimental results with simulations.  
THPCH093 Bunch-by-bunch Feedback for the Photon Factory Storage Ring 3009
 
  • W.X. Cheng, T. Honda, M. Izawa, T. Obina, M.T. Tadano, M. Tobiyama
    KEK, Ibaraki
  • K. Kobayashi, T. Nakamura
    JASRI/SPring-8, Hyogo-ken
 
  After the straight-section upgrade in 2005, the PF (Photon Factory) ring will start the top-up operation or the continuous mode in 2006. Previously the octupole magnets were used to suppress the transverse coupled bunch instability and RF modulation method to enhance the bunch length has been effectively used to suppress the longitudinal instabilities. However, such kind of methods are not suitable for the top-up operation, we are preparing active bunch-by-bunch feedback systems for both transverse and longitudinal plane. The transverse feedback system has been installed along with the straight-section upgrade, this system uses a FPGA based feedback processor board developed at the SPring-8, both horizontal and vertical signals are processed in a single control loop. For the longitudinal feedback, a two-port DAFNE type wide-band cavity has been designed and is now manufacturing, a digital signal processing part is under design, the whole system will start commissioning in autumn 2006.  
THPCH103 Design and Testing of Gproto Bunch-by-bunch Signal Processor 3038
 
  • D. Teytelman, R. Akre, J.D. Fox, A. Krasnykh, C.H. Rivetta, D. Van Winkle
    SLAC, Menlo Park, California
  • A. Drago
    INFN/LNF, Frascati (Roma)
  • J.W. Flanagan, T. Naito, M. Tobiyama
    KEK, Ibaraki
 
  A prototype programmable bunch-by-bunch signal acquisition and processing channel with multiple applications in storage rings has been developed at SLAC. The processing channel supports up to 5120 bunches with bunch spacings as close as 1.9 ns. The prototype has been tested and operated in five storage rings: SPEAR-3, DAFNE, PEP-II, KEKB, and ATF damping ring. The testing included such applications as transverse and longitudinal coupled-bunch instability control, bunch-by-bunch luminosity monitoring, and injection diagnostic. In this contribution the prototype design will be described and its operation will be illustrated with the data measured at the abovementioned accelerators.