A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tecker, F.

Paper Title Page
MOPLS101 Beam Dynamics and First Operation of the Sub-harmonic Bunching System in the CTF3 Injector 795
 
  • P. Urschütz, H.-H. Braun, G. Carron, R. Corsini, S. Doebert, T. Lefevre, G. McMonagle, J. Mourier, J.P.H. Sladen, F. Tecker, L. Thorndahl, C.P. Welsch
    CERN, Geneva
 
  The CLIC Test Facility CTF3, built at CERN by an international collaboration, aims at demonstrating the feasibility of the CLIC scheme by 2010. The CTF3 drive beam generation scheme relies on the use of a fast phase switch of a sub-harmonic bunching system in order to phase-code the bunches. The amount of charge in unwanted satellite bunches is an important quantity, which must be minimized. Beam dynamics simulations have been used to study the problem, showing the limitation of the present CTF3 design and the gain of potential upgrades. In this paper the results are discussed and compared with beam measurements taken during the first operation of the system.  
MOPLS102 Beam Dynamic Studies and Emittance Optimization in the CTF3 Linac at CERN 798
 
  • P. Urschütz, H.-H. Braun, R. Corsini, S. Doebert, F. Tecker
    CERN, Geneva
  • A. Ferrari
    UU/ISV, Uppsala
 
  Small transverse beam emittances and well-known lattice functions are crucial for the 30 GHz power production in the Power Extraction and Transfer Structure (PETS), and for the commissioning of the delay loop of the CLIC Test Facility 3 (CTF3). Following beam-dynamics-simulation results, two additional solenoids were installed in the CTF3 injector in order to improve the emittance. During the runs in 2005 and 2006, an intensive measurement campaign to determine Twiss parameters and beam sizes was launched. The results obtained by means of quadrupole scans for different modes of operation suggest rms emittances well below the nominal (100 pi mm mrad) and a convincing agreement with PARMELA simulations.  
TUPCH083 Time-resolved Spectrometry on the CLIC Test Facility 3 1205
 
  • T. Lefevre, C.B. Bal, H.-H. Braun, E. Bravin, S. Burger, R. Corsini, S. Doebert, C.D. Dutriat, F. Tecker, P. Urschütz, C.P. Welsch
    CERN, Geneva
 
  The high charge (>6microC) electron beam produced in the CLIC Test Facility 3 (CTF3) is accelerated in fully loaded cavities. To be able to measure the resulting strong transient effects, the time evolution of the beam energy and its energy spread must be measured with at least 50MHz bandwidth. Three spectrometer lines were installed all along the linac in order to control and tune the beam. The electrons are deflected by a dipole magnet onto an Optical Transition Radiation (OTR) screen, which is observed by a CCD camera. The measured beam size is then directly related to the energy spread. In order to provide time-resolved energy spectra, a fraction of the OTR photons is sent onto a multichannel photomultiplier. The overall set-up is described, special focus is given to the design of the OTR screen with its synchrotron radiation shielding. The performance of the time-resolved measurements are discussed in detail. Finally, the limitations of the system, mainly due to radiation problems, are discussed.  
MOPLS093 Commissioning Status of the CTF3 Delay Loop 771
 
  • R. Corsini, S. Doebert, F. Tecker, P. Urschütz
    CERN, Geneva
  • D. Alesini, C. Biscari, B. Buonomo, A. Ghigo, F. Marcellini, B. Preger, M. Serio, A. Stella
    INFN/LNF, Frascati (Roma)
 
  The CLIC Test Facility CTF3, built at CERN by an international collaboration, aims at demonstrating the feasibility of the CLIC scheme by 2010. In particular, one of the main goals is to study the generation of high-current electron pulses by interleaving bunch trains in delay lines and rings using transverse RF deflectors. This will be done in the 42 m long delay loop, built under the responsibility of INFN/LNF, and in the 84 m long combiner ring that will be installed in 2006. The delay loop installation was completed, and its commissioning started at the end of 2005. In this paper the commissioning results are presented, including the first tests of beam recombination.  
MOPLS103 A High-gradient Test of a 30 GHz Molybdenum-iris Structure 801
 
  • W. Wuensch, C. Achard, H.-H. Braun, G. Carron, R. Corsini, S. Doebert, R. Fandos, A. Grudiev, E. Jensen, T. Ramsvik, J.A. Rodriguez, J.P.H. Sladen, I. Syratchev, M. Taborelli, F. Tecker, P. Urschütz, I. Wilson
    CERN, Geneva
  • H. Aksakal
    Ankara University, Faculty of Sciences, Tandogan/Ankara
  • Ö.M. Mete
    Ankara University, Faculty of Engineering, Tandogan, Ankara
 
  The CLIC study is investigating a number of different materials as part of an effort to find ways to increase achievable accelerating gradient. So far, a series of rf tests have been made with a set of identical-geometry structures: a tungsten-iris 30 GHz structure, a molybdenum-iris 30 GHz structure and a scaled molybdenum-iris X-band structure. A second molybdenum-iris 30 GHz structure of the same geometry has now been tested in CTF3 with pulse lengths up to 350 ns. The new results are presented and compared to those of the previous structures to determine dependencies of quantities such as accelerating gradient, material, frequency, pulse length, power flow, conditioning rate and breakdown rate.