A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Senichev, Y.

Paper Title Page
TUPLS044 The 3D Beam Dynamics with the Space Charge in the Low and Middle Energy Super-conducting Option of HIPPI 1594
 
  • N.E. Vasyukhin, R. Maier, Y. Senichev, R. Tölle
    FZJ, Jülich
 
  For the low and middle energy of the High Intensity Proton Pulse Injector (HIPPI), a superconducting option is considered.The 3D beam dynamics simulation results in the slot and the finger-slot sections covering the energy range from 3 to 160 MeV are presented. The optimization aim is the increase of beam current together with the reduction of emittance growth, beam losses and costs. The slot structure is compared with the conventional spoke structure.  
WEPCH072 The High Order Non-linear Beam Dynamics in High Energy Storage Ring of FAIR 2083
 
  • A.N. Chechenin, R. Maier, Y. Senichev, E. Senicheva
    FZJ, Jülich
 
  The High Energy Storage Ring (HESR) is part of the international project FAIR for antiproton physics with beam in the momentum range from 1.5 to 15 GeV/c to explore the research areas of hadron structure and quark-gluon dynamics. An important feature of the project is the combination of phase space cooled beams with thick internal targets. Therefore there are two obvious reasons of beam heating: the target-beam interaction and the intra-beam scattering. Another source of the beam size growth is the higher order resonances. In the paper we investigate the non-linear beam dynamics together with different correction schemes minimizing this effect and compare with other sources of beam heating. Since the tune working point has a spread dependent on the chromaticity correction scheme and space charge, we include in our consideration both effects as well. All beam dynamics calculations are carried out with the SIMBAD code from the Unified Accelerator Library (UAL). We use 10000 macro particles, grid sizes 64x64 and 1000 turns per run.  
THPCH008 The Non-linear Space Charge Field Compensation of the Electron Beam in the High Energy Storage Ring of FAIR 2802
 
  • A.N. Chechenin, R. Maier, Y. Senichev
    FZJ, Jülich
 
  In the High Energy Storage Ring, a part of the FAIR project at GSI in Darmstadt, the internal target is used. To compensate the interaction of the beam with the target, the electron beam cooling is needed. However, together with the cooling, the non-linear space charge field of electron beam modifies the dynamic aperture. We investigate the possible schemes of this effect compensation using the multi-pole correctors on the HESR.