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Abstract 
The High Energy Storage Ring (HESR) is a part of the 

international project FAIR for the antiproton physics with 
beam in a momentum range from 1.5 to 15 GeV/c to 
explore the research areas of hadron structure and quark-
gluon dynamics [1]. An important feature of the project is 
the combination of phase space cooled beams with 
internal targets. Therefore there are two obvious reasons 
of beam heating: the target-beam interaction and the intra-
beam scattering. 

Another source of the beam size growth is the high 
order non-linear resonances. In the paper we investigate 
the non-linear beam dynamics together with the different 
schemes minimizing this affect. 

HESR LATTICE 
The HESR lattice consists of two arcs and two straight 

sections for target and cooling facilities with 
circumference 574 m [2]. Figure 1 shows the common 
view of HESR and one half super-period. 

 
Figure1: Schematic layout of the HESR lattice and one 
half super-period. 

HIGH ORDER NON-LINEARITY ORIGIN 

Multipoles 
The optics of HESR consists of the quadrupoles, the 

bend magnets, the sextupoles and the multipoles 
correctors. Besides, due to the imperfections the 
multipoles errors are added into the lattice. Even in ideal 
optics and for the monochromatic beam each n-th 
multipole nM  in composition with the curvature mh  
creates all higher multipoles mnM + .  

Following the MAD presentation, Hamiltonian of 
system is: 
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quadrupole, sextupole and octupole coefficients and 
0≠Δ≡ ppδ  is the momentum spread. 

In case of non-monochromatic beam 0≠Δ≡ ppδ  each 
multi-pole of n-th order nM gives all multi-poles )1(1 −÷ nM  
of 1÷(n-1)-th order in the place where D≠0. 
In case of the closed orbit distortion co   and    yxco any 
multi-pole nM  of the n-th order is: 
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Thus, due to the closed orbit distortion each n-th multi-
pole nM  gives additionally all multipoles )1(1 −÷ nM . 

Chromatic sextupoles 
Usually the strongest contribution into the non-linearity 

is coming from the chromatic sextupoles. In order to 
investigate the non-linear optics the Hamiltonian (1) is 
presented as: 
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where the coefficients ∑=
p

jklm
jk

lm iphE θ exp  depend on 

the value and the distribution of the non-linear elements. 
They have the periodicity π2  with the new “time” 
coordinate Cs πθ 2⋅= . So, the non-linear part of 
Hamiltonian is:  
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with the Fourier coefficients ∫=
π

θ
π

2

0

 exp
2
1 ipEh jk

lmjklm . In 

case, when two conditions, the non-zero harmonic value 
0≠jklmh  for some of the non-linear elements kjM + , and 

the equality pkk yyxx =+ νν , where lk x =  and mk y = , 
are fulfilled, we have the non-linear resonance. And on 
the contrary, when we wish to exclude the resonance 
influence, we should minimize the harmonic amplitude. 

The only condition, which one cancels all coefficients 
jk

lmE , is the zero value of 0=jklmh  for all j, k, l, m. In 
particular, in case of the chromaticity correction on arcs 
with N  super-periods the sextupoles have to be placed 
with the phase advances yx μμ ,  per one super-period, 
when the harmonic 0=jklmh  for all above mentioned 
combinations of j, l, k, m, and the total multipole of third 
order is canceled: 
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In the HESR two families of sextupoles are used for the 
chromaticity correction: two focusing and two defocusing 
sextupoles. If super period number N  is even and arc 
tunes yx,ν  are odd, then the phase advance between 
similar sextupoles of thn −  and ( ) thNn −+ 2  super 

periods equals 
22

,, yxyx N
N

νν
=⋅ . It means we have an exact 

condition for compensating each sextuplet’s non-linear 
action by another one [2]. 

THE NON-LINEAR TUNE SHIFT DUE TO 
MULTIPOLES 

Nekhoroshev’s condition 
At derivation of the Hamiltonian (2) we use the first 

order perturbation theory, when the value jklmh  is taken as 
the small parameter. Already in the first order of the 
resonance theory ( )1=Ρ  the sextupole excites four 
resonances { } { }2,1 ;0,3 ;0,1, ±=ml . The number of 
resonances and their order grows with the order as 12P + . 
The resonance arises under the condition 

2/122 )( yxyyxx kkkkp +⋅Δ=++ νν , where Δ  is the 
detuning from resonance, and mklk yx ==    , . 

In the action-angle variables the average Hamiltonian 
of the motion can be written as: 
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and the coefficients xyyx ζζζ ,,  determine the non-linear 
tune shift. In the first order of the perturbation theory the 
non-linear tune shifts arise due to the octupoles. But 
already in the second order the sextupoles give 
contribution in the non-linear tune shift as well. The 
influence of the non-linearity is specified by the 
discriminant in the expression: 
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The lattices with px h30>>ζ  have to be classified as a 
special lattice, since it is a case, when the value of ph30  is 
effectively suppressed, but the non-linearity remain to be 
under control and strong. It is obvious from (6), if the sign 
of the detuning Δ  coincides with the sign of the tune shift 

xζ , the discriminant is negative and the system has only 
one centre at 0=xI . Therefore this case corresponds to 
the maximum stable region and the lattice with these 
features is the most hopeful. However, we can see from 
the discriminant D , if xyζ  has the opposite sign with the 
tune Δ , then under some amplitude of oscillation in the 
vertical plane yI  the total detuning yxytotal Iζ+Δ=Δ  can 
make the discriminant 0≥D . Following the 
Nekhoroshev’s quasi-isochronous condition [3] the 
maximum stable region is when all xyyx ζζζ ,,  have the 
same sign. 

Correction of non-linear tune shift 
Thus, as the first step, the chromatic sextupole have 

been compensated in the frame of the first order 
perturbation theory. And after the only reason of the 
structural resonance excitation is the working point 
smearing due to the non-linear tune shift. 

As the second step, using the multipole correctors, we 
can compensate or at least minimize the total non-linear 
tune shift. For this purpose we investigated the individual 
non-linear tune shift of each type of multipoles. The 
calculated total tune can be represented as the function of 
the emittance through the radius xxxr εβ= : 
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The non-linear tune shift is determined by the first 

coefficient 
0=

∂
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, which depends on the required 

corrected chromaticity corζΔ (see Fig. 2). In both planes it 
can be approximated by the parabolic dependence  
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Figure 2: The horizontal and vertical non-linear tune shift 
versus the required corrected chromaticity 2

corζΔ . 

Besides, the errors in the bend magnets affect on the 
non-linear tune as well. Figure 3 shows the non-linear 
tune shift versus the sextupole and octupole component 
errors in the bend magnet measured in the units 

0_
4 /10 Bb magsextΔ×  and 0_

4 /10 Bb magoctΔ×  
correspondingly. 

 
Figure 3: The non-linear tune shift vs the sextupole 

0_ / Bb magsextΔ  and octupole 0_ / Bb magoctΔ  components in 
bend magnet. 

From the numerical simulation we found out that the 
horizontal tune shift is more sensitive to the errors in the 
bend magnet. 

In order to compensate the non-linear tune shifts we use 
the multipole correctors located near each quadrupoles 
(see fig. 1 and 4). 

 
Figure 4: The non-linear tune shift versus the octupole 
components in multipole horizontal hcor

octb  and vertical 
vcor
octb  corrector. 

The Table 1 shows the coefficients between the 
horizontal, vertical tune shifts and the corresponding 

parameters. Due to the different value of coefficients for 
the correctors they are decoupled each from other and 
allows compensating the tune shifts in both planes. 

Table 1: Coefficients. 
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THE SPACE CHARGE TUNE SHIFT 
Due to the space charge two effects are observed: the 

mismatching and the structural resonances crossing. In 
our case, since the mismatching is determined by ratio 

yxyxyx ,,, /)( ννν Δ−  it has not significant effect. It is 
another situation with a structural resonance. By 
SIMBAD for each energy 1, 4 and 6 GeV we investigated 
the behavior of beam crossed the structural resonance. 

 
Figure 5: The structural resonance crossing. 

Figure 5 shows the resonance crossing for the different 
energy value. The curve indicates how due to the 
resonance crossing in the vertical plane with initial tune 

13.12=yν  the particles in bunch are redistributed. Thus, 
at W=1 GeV the minimum achieved emittance is about 
0.1 mm mrad. 
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