A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ruggiero, A.G.

 
Paper Title Page
TUPLS027 A Non-scaling FFAG for Radioactive Beams Acceleration (RIA) 1547
 
  • D. Trbojevic, T. Roser, A.G. Ruggiero
    BNL, Upton, Long Island, New York
 
  One of the most expensive components of proposals to accelerate heavy radioactive beams is the superconducting linac. This is an attempt to design a non-scaling Fixed-Field Alternating-Gradient (FFAG) lattice to allow acceleration of heavy radioactive beams in a short time period with an acceptance in momentum of ±50%. As it had been previously reported the non-scaling FFAG has very small orbit offsets, very strong focusing, and large momentum acceptance. The lattice with small combined function magnets would provide substantial savings in the cost of the RF.  
WEOBPA01 First Results of the CRFQ Proof of Principle 1873
 
  • D. Davino
    Universita' degli Studi del Sannio, Benevento
  • L. Campajola
    Naples University Federico II, Mathematical, Physical and Natural Sciences Faculty, Napoli
  • V. Lo Destro, A.G. Ruggiero
    BNL, Upton, Long Island, New York
  • M.R. Masullo
    INFN-Napoli, Napoli
  • V.G. Vaccaro
    Naples University Federico II and INFN, Napoli
 
  The Circular Radiofrequency Quadrupole is a new concept of a storage and accelerator ring for intense beams of light and heavy ions, protons and electrons. It is basically a Linear Radiofrequency Quadrupole completely bent on a circle. The advantages, which are expected to be the same performance features of a linear RFQ, would be smaller overall dimension with respect to accelerators with comparable beam intensity and emittance*. A collaboration between BNL and Italian research institute and universities was set up at the end of 2002 with the aim of the proof of the bending principle**. The prototype design is based on a 4-rods scheme and have a linear sector followed by a 45-degree curved sector. The 1mA proton beam, produced by a reconditioned RF source, go through a beam gap diameter of 10mm with circular 10mm diameters rods. Each sector is 700mm long and is placed in a 150mm diameter pipe***. The RF power at 202.56MHz is fed by a CERN "Frank James" 50kW amplifier. In this paper the first power and beam tests of the linear sector are presented.

*A.G. Ruggiero, C-A/AP/65 note, Brookhaven National Laboratory, October 2001. **A.G. Ruggiero et al., Proceedings of the EPAC 2004 conference.***D. Davino et al., Proceedings of the EPAC 2004 conference.

 
slides icon Transparencies