A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Mori, Y.

 
Paper Title Page
TUPLS076 Beam Extraction of 150 MeV FFAG 1672
 
  • M. Aiba, Y. Mori, H. Nakayama, K. Okabe, Y. Sakamoto, A. Takagi
    KEK, Ibaraki
  • R. Taki
    GUAS/AS, Ibaraki
  • Y. Yonemura
    Kyushu University, Fukuoka
 
  A beam extraction from FFAG accelerator was performed for the first time at KEK 150MeV proton FFAG synchrotron. The purpose of 150MeV FFAG project is to establish a working prototype for various applications. The beam extraction is thus one of important goals. The extraction is based on fast extraction methode using kicker and pulse septum working at 100Hz. A rapid cycling is also our focus to take advantages of FFAG accelerator. Beam extraction experiment was successful under 100Hz operating. The details of experiment will be presented in this paper.  
WEPCH186 Present Status of FFAG Accelerators in KURRI for ADS Study 2367
 
  • M. Tanigaki, M. Inoue, K. Mishima, S. Shiroya
    KURRI, Osaka
  • S. Fukumoto, Y. Ishi
    Mitsubishi Electric Corp, Energy & Public Infrastructure Systems Center, Kobe
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • Y. Mori
    KEK, Ibaraki
 
  KART (Kumatori Accelerator driven Reactor Test) project is in progress at the Kyoto University Research Reactor Institute (KURRI) since fiscal year 2002. We are now constructing a 150 MeV proton FFAG accelerator complex as a neutron production driver for this project. The whole of this FFAG complex is expected to be in the test operation around the spring in 2006. The developments and the current status of this accelerator complex, including the current status of this project, will be presented.  
TUXFI01 FFAG Accelerators and their Applications 950
 
  • Y. Mori
    KURRI, Osaka
 
  This talk will give an introduction to the FFAG concept and review the present development of FFAG accelerators. It will also discuss the use of FFAGs for applications such as hadron therapy, neutron generation, BNCT, ADS, and muon acceleration.  
slides icon Transparencies
TUPLS077 Development of FFAG-ERIT Ring 1675
 
  • K. Okabe, M. Muto
    KEK, Ibaraki
  • Y. Mori
    KURRI, Osaka
 
  An intense neutron source with the emittance recovery internal target (ERIT) using the FFAG accelerator is under development. The design of the FFAG storage ring for this purpose will be presented.  
WEPLS056 R&D Status of the High-intense Monochromatic Low-energy Muon Source: PRISM 2508
 
  • A. Sato, M. Aoki, Y. Arimoto, I. Itahashi, Y. Kuno, K. Kuriyama, T. Oki, T. Takayanagi, M. Yoshida
    Osaka University, Osaka
  • M. Aiba, C. Ohmori, T. Yokoi, K. Yoshimura
    KEK, Ibaraki
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • Y. Mori
    KURRI, Osaka
 
  PRISM is a project of a future intense low-energy muon source, which combines monochromaticity and high purity. Its aimed intensity is about $1011-1012 muons per second. The muon beams will have a low kinetic energy of 20MeV so that it would be optimized for the stopped muon experiments such as searching the muon lepton flavor violating processes. PRISM consists of a pion capture section, a pion/muon transfer section and a phase rotation ssection. An FFAG is used as the phase rotator to achieve the monochromatic muon beams. This paper will describe design status of these sections as well as construction status of PRISM-FFAG.