A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

McIntosh, E.

Paper Title Page
MOPLS001 Large Scale Beam-beam Simulations for the CERN LHC using Distributed Computing 526
 
  • W. Herr, E. McIntosh, F. Schmidt
    CERN, Geneva
  • D. Kaltchev
    TRIUMF, Vancouver
 
  We report on a large scale simulation of beam-beam effects for the CERN Large Hadron Collider (LHC). The stability of particles which experience head-on and long-range beam-beam effects was investigated for different optical configurations and machine imperfections. To cover the interesting parameter space required computing resources not available at CERN. The necessary resources were available in the LHC@home project, based on the BOINC platform. At present, this project makes more than 40000 hosts available for distributed computing. We shall discuss our experience using this system during a simulation campaign of more than six months and describe the tools and procedures necessary to ensure consistent results. The results from this extended study are presented and future plans are discussed.  
WEPCH093 Parameter Scans and Accuracy Estimates of the Dynamic Aperture of the CERN LHC 2131
 
  • M. Giovannozzi, E. McIntosh
    CERN, Geneva
 
  Techniques to make use of large distributed computing facilities allow for denser parameter scans of the dynamical aperture, i.e., the domain in phase space where bounded single-particle motion prevails. Moreover, one can also increase the number of 'seeds' each of which represents a possible realisation of multipolar components around the machine. In this paper the dependence of the dynamical aperture on the step size of the grid of initial conditions and on the number of seeds is studied. Estimates on the accuracy of the dynamic aperture are derived and the definition of an improved protocol for numerical simulations is presented.