A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Martinet, G.

Paper Title Page
MOPCH144 Low Temperature Properties of Piezoelectric Actuators Used in SRF Cavities Cold Tuning Systems 390
 
  • G. Martinet, S. Blivet, F. Chatelet, M. Fouaidy, N. Hammoudi, A. Olivier, H. Saugnac
    IPN, Orsay
 
  High accelerating gradients (10 MV/m for SNS, 33 MV/m for ILC) at which SRF cavities will be operated in pulsed machines induce frequency shift much higher than the resonator bandwidth. This so-called Lorentz detuning should be compensated dynamically by means of an active piezo-tuning system. In the frame of the CARE project activities supported by EU, IPN Orsay participates to the development of a fast cold tuning system based and piezoelectric technology for SRF cavities operating at temperature T=2K. The aim of this study is the full characterization of piezoelectric actuators at low temperature including dielectric properties (capacitance, impedance, dielectric losses), radiation hardness tests (fast neutron tolerance), mechanical measurements (maximum displacement, maximum stroke) and thermal properties (heating, heat capacity). Results obtained in the temperature range from 2K up to 300K will be presented and discussed.  
MOPCH145 Tests Results of the Beta 0.07 and Beta 0.12 Quarter Wave Resonators for the SPIRAL2 Superconducting Linac 393
 
  • G. Olry, J.-L. Biarrotte, S. Bousson, C. Joly, T. Junquera, J. Lesrel, G. Martinet, D. Moura, H. Saugnac, P. Szott
    IPN, Orsay
  • P.-E. Bernaudin, P. Bosland, G. Devanz
    CEA, Gif-sur-Yvette
 
  New developments and tests have been carried out on low beta (0.07) and high beta (0.12) 88 MHz superconducting Quarter Wave Resonators. These resonators will be installed in the LINAC driver, respectively in the low beta section, composed of cryomodules A (developed at CEA-Saclay) and the high beta section composed of cryomodules B (developed at IPN-Orsay). Both resonators' types will be equipped with the same power coupler (developed at LPSC-Grenoble) and designed for a maximum power of 20 kW. RF tests results of the prototype cavities and power couplers are reported. The fabrication of the two cryomodules prototypes, fully equipped, is in progress in order to be ready for high power RF tests at 4.2 K at the beginning of 2007.  
MOPCH146 Status of the Beta 0.12 Superconducting Cryomodule Development for the Spiral2 Project 396
 
  • H. Saugnac, J.-L. Biarrotte, S. Blivet, S. Bousson, C. Commeaux, C. Joly, T. Junquera, J. Lesrel, fl. Lutton, G. Martinet, G. Olry, P. Szott
    IPN, Orsay
 
  SPIRAL2 is a radioactive beams facility, composed of a superconducting linac driver, delivering deuterons with an energy up to 40 MeV (5 mA) and heavy ions with an energy of 14.5 MeV/u (1 mA). This facility is now fully approved by the French government. IPN Orsay is in charge of the study and manufacture of the beta 0.12 cryomodule of the superconducting LINAC. These cryomodule, designed for an overall cryogenic power of 30 W at 4.2 K, is composed of two quarter wave type 88 MHz rf resonator providing a minimum of 6.5 MV/m with a quality factor of 1 10 9, two tuning mechanisms controlling the resonator frequency and an alignment system allowing to adjust the cavity position with a ± 1 mm accuracy. Several tests performed on a first resonator prototype fabricated by the "Ettore Zanon SpA" Company, have validated the cavity and its auxiliary components design. A first cryomodule fully equipped (cavities, cryostat, tuning and alignment systems), planned to be tested at the beginning of 2007, is under manufacturing. The details of the cryomodule design and the resonator tests results are discussed in the paper.