A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kuroda, R.

Paper Title Page
MOPCH056 Development of High Brightness Soft X-ray Source Based on Inverse Compton Scattering 166
 
  • R. Moriyama, Y. Hama, K. Hidume, A. Oshima, T. Saito, K. Sakaue, M. Washio
    RISE, Tokyo
  • H. Hayano, J. Urakawa
    KEK, Ibaraki
  • S. Kashiwagi
    ISIR, Osaka
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
 
  Compact soft X-ray source based on inverse compton scattering have been developed at Waseda University. Using 1047nm laser light from Nd:YLF laser scattered off 4.2MeV electron beam generated from a photo-cathode rf-gun, we have already suceeded to generate the soft X-ray. The energy of this x-ray is included in the part of water window, in which absorption of water is much less than that of moleculars that organize a living body. Furthermore, this x-ray source has other features such as short pulse, proportional mono-energy and energy variableness. Because of these tures, the application to the biological microscope have been expected. However, the flux of x-ray is not satisfied for the biological microscope application. Therefore, to multiply a soft X-ray flux, we utilized multi-pass amplifier for the laser light and improved a collision chamber. In this conference, we will report the experimental results and future plans.  
WEPCH178 Simulation Study of Compact Hard X-ray Source via Laser Compton Scattering 2346
 
  • R. Kuroda, M.K. Koike, H. Ogawa, N. Sei, H. Toyokawa, K. Y. Yamada, M.Y. Yasumoto
    AIST, Tsukuba, Ibaraki
  • N. Nakajyo, F. Sakai, T. Yanagida
    SHI, Tokyo
 
  The compact hard X-ray source via laser Compton scattering between high intensity electron beam and high power laser beam was developed at FESTA (The Femtosecond Technology Research Association) project in collaboration between AIST and SHI. According to completion of the project in March 2005, the compact hard X-ray source is being transferred from FESTA to AIST to upgrade and to apply the system to biological and medical uses. Our system consists of a laser-driven photocathode rf gun, two 1.5m-long S-band accelerator structures and a high power Ti:Sa Laser system. This system can generate a hard X-ray pulse which has variable energy of 12 keV – 33 keV with narrow bandwidth by changing electron energy and collision angle. Maximum X-ray photon yield at FESTA was accomplished about 107photons/s (@10Hz, MAX 33keV) in case of 165 degree collision angle. In the next phase, we are planning to make the total system much compact using X-band or C-band accelerator structures with permanent magnets. We have carried out the numerical simulations to investigate the possibility of these compact systems. In this conference, we will talk about results of the simulations and future plans.  
WEPCH188 Compact Picosecond Pulse Radiolysis System Using Photo-cathode RF Gun 2373
 
  • M. Washio, Y. Hama, Y. Kamiya, M. Kawaguchi, R. Moriyama, H. Nagai, K. Sakaue
    RISE, Tokyo
  • H. Hayano, J. Urakawa
    KEK, Ibaraki
  • S. Kashiwagi
    ISIR, Osaka
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
  • K.U. Ushida
    RIKEN, Saitama
 
  A very compact picosecond pulse radiolysis system has been installed and operated at Waseda University. The system is composed of a laser photo-cathode RF gun as the pump source and stable Nd:YLF laser as the white light source to probe the reaction in the picosecond region. The white light generation is performed by the non-linear effect of intense laser light with the wavelength of 1047 nm into the water cell. The experimental results with the time resolution of 18 ps by examining the time profile of hydrated electron have been obtained. The system configuration will be also presented at the conference.