A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kawaguchi, H.

Paper Title Page
WEPCH131 Development of Numerical Code for Self-consistent Wake Field Analysis with Curved Trajectory Electron Bunches 2230
 
  • H. Kawaguchi
    Muroran Institute of Technology, Department of Electrical and Electronic Engineering, Muroran
  • K. Fujita
    Hokkaido University, Sapporo
 
  Strongly interacting phenomena of electromagnetic radiation fields and ultra-relativistic electron is one of great interests in accelerator science such as in electron beam dynamics at the bunch compressor. The phenomena are described by time domain boundary value problem for the Lienard-Wiechert solutions. Authors develop a time domain boundary element method for self-consistent wake fields analysis of electromagnetic fields and charged particles. To use boundary integral equation for describing the electromagnetic fields, the time domain boundary value problems for the Lienard-Wiechert solution can be naturally formulated and we can simulate the wake fields phenomena with electron beam dynamics. In this paper, beam dynamics of curved trajectory electron bunches inside uniform beam tube are numerically simulated by using 2.5 dimension time domain boundary element technique. Various effects of closed beam tube for ultra-relativistic electron dynamics are considered comparing with the Lienard-Wiechert solutions in free space.  
WEPCH132 Design Study of Dedicated Computer System for Wake Field Analysis with Time Domain Boundary Element Method 2233
 
  • K. Fujita, T. Enoto
    Hokkaido University, Sapporo
  • H. Kawaguchi
    Muroran Institute of Technology, Department of Electrical and Electronic Engineering, Muroran
 
  Time domain boundary element method (TDBEM) has advantages of dispersion free calculations and modeling of curved beam trajectories in wake field analysis compared to conventional methods. These advantages give us powerful possibilities for analysis of beam dynamics due to CSR in bunch compressors of next-generation accelerators. On the other hand, the TDBEM also has a serious difficulty of large computational costs. In this paper, a dedicated computer system for wake field analysis with the TDBEM is proposed as one of solutions for high performance computing (HPC) technologies. Recent remarkable progress of LSI hardware design environments such as HDL compiler tools and large scale FPGAs enables us to make up computer hardware systems with very low cost in a short development period. The authors have been working in design studies of the TDBEM dedicated computer system on such LSI design environments. This paper presents a system design and VHDL simulations of a wake field analysis machine based on the TDBEM.