A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kaertner, F.X.

  
Paper Title Page
MOPCH021 FERMI @ Elettra: Conceptual Design for a Seeded Harmonic Cascade FEL for EUV and Soft X-rays 0
 
  • C.J. Bocchetta, E. Allaria, D. Bulfone, P. Craievich, G. D'Auria, M.B. Danailov, G. De Ninno, S. Di Mitri, B. Diviacco, M. Ferianis, A. Gambitta, A. Gomezel, E. Karantzoulis, G. Penco, M. Trovo
    ELETTRA, Basovizza, Trieste
  • J.N. Corlett, W.M. Fawley, S.M. Lidia, G. Penn, A. Ratti, J.W. Staples, R.B. Wilcox, A. Zholents
    LBNL, Berkeley, California
  • M. Cornacchia, P. Emma
    SLAC, Menlo Park, California
  • W. Graves, F.O. Ilday, F.X. Kaertner, D. Wang
    MIT, Middleton, Massachusetts
  • F. Parmigiani
    Università Cattolica-Brescia, Brescia
 
  We present a summary of the conceptual design for the FERMI FEL project funded for construction at the Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FEL's, providing controlled, high peak-power pulses, and complementing the storage ring light source at Sincrotrone Trieste. The facility is to be driven by electron beam from a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac. Designed for an initial complement of two FEL's, providing tunable output over a range from ~100 nm to ~10 nm, FERMI will allow control of pulse duration from less than 100 fs to approximately1 ps, and with polarization control from APPLE undulator radiators. Seeded by tunable UV lasers, FEL-1 is a single-stage of harmonic generation to operate over ~100 nm to ~40 nm, and FEL-2 a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. Photon output is spatially and temporally coherent, with peak power in the 100’s MW to GW range. We have designed FEL-2 to minimize the output radiation spectral bandwidth. Major systems and overal facility layout are described, and key performance parameters summarized.  
TUPCH029 High-precision Laser Master Oscillators for Optical Timing Distribution Systems in Future Light Sources 1064
 
  • A. Winter, P. Schmüser, A. Winter
    Uni HH, Hamburg
  • J. Chen, F.X. Kaertner
    MIT, Cambridge, Massachusetts
  • F.O. Ilday
    Bilkent University, Bilkent, Ankara
  • F. Ludwig, H. Schlarb
    DESY, Hamburg
 
  X-ray pulses with a pulse duration in the 10 fs regime or even less are needed for numerous experiments planned at next generation free electron lasers. A synchronization of probe laser pulses to the x-ray pulses with a stability on the order of the pulse width is highly desirable for these experiments. This requirement can be fulfilled by distributing an ultra-stable timing signal to various subsystems of the machine and to the experimental area to provide synchronization at the fs level over distances of several kilometers. Mode-locked fiber lasers serve as laser master oscillators (LMO), generating the frequencies required in the machine. The pulse train is distributed through length-stabilized fiber links. This paper focuses on the LMO, devoting special attention to the phase noise properties of the frequencies to be generated, its reliability to operate in an accelerator environment, and the residual timing jitter and drifts of the RF feedback for the fiber links. A prototype experimental system has been constructed and tested in an accelerator environment and its performance characteristics will be evaluated.  
THOPA03 An Integrated Femtosecond Timing Distribution System for XFELs 2744
 
  • J. Kim, J. Burnham, dc. Cheever, J. Chen, F.X. Kaertner
    MIT, Cambridge, Massachusetts
  • M. Ferianis
    ELETTRA, Basovizza, Trieste
  • F.O. Ilday
    Bilkent University, Bilkent, Ankara
  • F. Ludwig, H. Schlarb, A. Winter
    DESY, Hamburg
 
  Tightly synchronized lasers and rf-systems with timing jitter in the few femtoseconds range are an important component of future x-ray free electron laser facilities. In this paper, we present an optical-rf phase detector that is capable of extracting an rf-signal from an optical pulse stream without amplitude-to-phase conversion. Extraction of a microwave signal with less than 10 fs timing jitter (from 1 Hz to 10 MHz) from an optical pulse stream is demonstrated. Scaling of this component to sub-femtosecond resolution is discussed. Together with low noise mode-locked lasers, timing-stabilized optical fiber links and compact optical cross-correlators, a flexible femtosecond timing distribution system with potentially sub-10 fs precision over distances of a few kilometres can be constructed. Experimental results on both synchronized rf and laser sources will be presented.

*A. Winter et al. "Synchronization of Femtosecond Pulses", Proceedings of FEL 2005.**J. Kim et al. "Large-Scale Timing Distribution and RF-Synchronization for FEL Facilities", Proc. of FEL 2004.

 
slides icon Transparencies
THPPA01 High-precision Laser Master Oscillators for Optical Timing Distribution Systems in Future Light Sources 2747
 
  • A. Winter, P. Schmüser, A. Winter
    Uni HH, Hamburg
  • J. Chen, F.X. Kaertner
    MIT, Cambridge, Massachusetts
  • F.O. Ilday
    Bilkent University, Bilkent, Ankara
  • F. Ludwig, H. Schlarb
    DESY, Hamburg
 
  Abstract to be supplied  
slides icon Transparencies