

An Integrated Femtosecond Timing Distribution System for XFELs

Jung-won Kim, Jon Burnham, Jeff Chen, and Franz X. Kärtner *MIT, Cambridge, MA, USA*

> F. Ömer Ilday *MIT, *currently with Bilkent University, Ankara, Turkey*

Frank Ludwig, Holger Schlarb, Axel Winter DESY, Hamburg, Germany

> Mario Ferianis ELETTRA, Trieste, Italy

Dan Cheever *MIT-Bates Linear Accelerator, Middleton, MA, USA*

Supported by DESY, FERMI-Trieste, MIT-Bates Laboratory & ONR

RESEARCH LABORATORY OF ELECTRONICS Massachusetts Institute of Technology

www.rle.mit.edu

4th Generation Light Sources: XFEL

Demands on Optical Timing Distribution

• 4-th Generation Light Sources demand increasingly precise timing

today << 100 fs, in 3 years: < 10fs , in 6 years: < 1fs?

 \rightarrow Scalability to these levels should be possible!

- Must serve multiple locations separated by up to 1-5 km distances.
- This is beyond what a direct RF-distribution (coaxial cables) can handle.
 - thermal drifts of coaxial cables
 - drifts of microwave mixers
 - etc.
- It will lead to a considerable reduction in cost and space!

1. Optical Master Oscillator A master mode-locked laser producing a very stable pulse train (can be locked to a microwave oscillator for long-term stability) Low-noise microwave oscillator low-bandwidth lock fiber Optical to RF couplers Master laser sync module oscillator Optical to RF sync module low-level RF Optical to optical Laser sync module Чiī rle

- RF signal is encoded in the pulse repetition rate.
 - \rightarrow Every harmonic can be extracted.
- Suppress Brillouin scattering and undesired reflections.
- Optical cross-correlation can be used for timing stabilization.
- Pulses can directly seed amplifiers.
- Group delay is directly stabilized.

Phase Noise (Timing Jitter) Measurements

2. Timing-Stabilized Fiber Links

Stabilized fiber links delivering the pulse train to multiple remote locations

System Test in Accelerator Environment

- Test done at MIT Bates Laboratory:
 - Locked EDFL to Bates master oscillator
 - Transmitted pulses through 400 meters partially temperature stabilized fiber link
 - Close loop on fiber length feedback

For more info: A. Winter et al, FEL 2005 F. Ö. Ilday et al, CLEO 2006

Jitter: Timing Stabilized Fiber Link

- Fiber link extremely stable even for open loop (60 fs for 0.1 Hz-5 kHz)
- Closing feedback loop reduces noise (12 fs for 0.1 Hz-5kHz)
- No significant noise added at higher frequencies

www.rle.mit.edu

In-Loop Phase Noise Measurement

Summary and Outlook

- **Optical master oscillator**: Ultrashort pulse trains from mode-locked lasers have excellent phase/timing noise properties. (~10 fs \rightarrow <1 fs)
- Timing-stabilized fiber links: initial demonstration in the accelerator environment. Optical cross-correlation system in progress for low-jitter, drift-free operation. (~10 fs → <1 fs)
- Optical-to-RF synchronization: Balanced optical-RF phase detectors are proposed for femtosecond and potentially sub-femtosecond optical-to-RF synchronization. (~3 fs \rightarrow <1 fs)
- Optical-to-optical synchronization: Balanced optical cross-correlation.
 Long term stable sub-femtosecond precision is already achieved. (<1 fs)

A (sub-)femtosecond timing distribution and synchronization system for 4th generation light sources can be accomplished.

Phase Noise (Jitter) of Transmitted Signal

- Jitter between Bates MO and optical master laser ~30 fs (10 Hz..2 kHz)
- Jitter added by Link < 22fs
- Total jitter added (1- 4) < 52 fs

Commercial Low-Noise Microwave Oscillators

- Very good microwave oscillators are commercially available for low phase noise in the low frequency range (< 1 kHz).
- Eventually can lock to an optical standard for μHz-level stability.

Typical Phase Noise of PSI SLCO-BCS at 10.240 GHz

- RF encoded in pulse repetition rate, every harmonic can be extracted.
- Suppress Brillouin scattering and undesired reflections.
- Optical cross correlation can be used for link stabilization or for optical-tooptical synchronization with other lasers
- Pulses can be directly used to seed amplifiers at end stations.
- Group delay is directly stabilized, not phase delay as would be the case in an interferometric link stabilization. (For L=1km and 1^oC, τ_{phase}-τ_{group}> 10fs, Polarization Mode Dispersion: 0.01-0.1ps/√km)

Timing-Stabilized Fiber Links PZT-based fiber SMF link stretcher 50:50 1 - 5 km isolator coupler \mathbf{O} **Master Oscillator** \frown OC Faraday coarse <100 fs Mirror **RF-lock** fine crossultimately < 1 fs correlator Assuming no fiber length fluctuations faster than T=2nL/c.

L = 1 km, n = 1.5 => T=1 µs, f_{max} ~ 100 kHz

K. Holman, et al. Opt. Lett. 30, 1225 (2005); < 40 fs in 1Hz-100kHz

Scalability in Phase Detection Sensitivity

Scalable Phase Detection Sensitivity

$$K_d = \frac{V_d}{\theta_e} \propto P_{avg} \Phi_0 \Phi_m$$

Shot Noise Floor Scalability

$$S_{\varphi,shot} = \frac{\langle \overline{V_{shot,mix}}^2 \rangle}{K_d^2 / N^2} = \frac{8q}{RP_{avg}\Phi_0^2}$$

P_{avg}	Optical power circulating Sagnac-loop	10 mW
Φ ₀	Phase modulation depth from VCO signal	0.4 rad
Φ _m	Phase modulation depth from synchronous signal	0.2 rad
R	Photodetector responsivity	0.9 A/W
q	Electron charge	1.6x10 ⁻¹⁹ C
Shot noise limited jitter = 0.5 fs (currently limited by other noise sources)		
ightarrow Scalable by increasing optical power and RF modulation depth		

