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Demands on Optical Timing Distribution

4-th Generation Light Sources demand increasingly precise timing 

today << 100 fs, in 3 years: < 10fs , in 6 years: < 1fs?

Scalability to these levels should be possible!

Must serve multiple locations separated by up to 1-5 km distances.

This is beyond what a direct RF-distribution (coaxial cables) can handle.
- thermal drifts of coaxial cables
- drifts of microwave mixers
- etc.

It will lead to a considerable reduction in cost and space!
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Synchronization System Layout
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1. Optical Master Oscillator
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A master mode-locked laser producing a very stable pulse train
(can be locked to a microwave oscillator for long-term stability)
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Why Optical Pulses (Mode-locked Lasers)?

RF signal is encoded in the pulse repetition rate.
Every harmonic can be extracted.

Suppress Brillouin scattering and undesired reflections.
Optical cross-correlation can be used for timing stabilization.
Pulses can directly seed amplifiers.
Group delay is directly stabilized.
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Er-Fiber Laser

Stretched-pulse Er-fiber Laser: Tamura et al. OL 18, 1080 (1993).

Out-
put

anomalous 
dispersion fiber

Er-fiber (normal dispersion)

Footprint can fit into Letter-size
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Phase Noise (Timing Jitter) Measurements

Noise floor limited by photo detection
Theoretical noise limit  <1 fs

Agilent Signal Analyzer 5052a @ 1GHz
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Stabilized fiber links delivering the pulse train to multiple remote locations

2. Timing-Stabilized Fiber Links
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System Test in Accelerator Environment
Test done at MIT Bates Laboratory:

Locked EDFL to Bates master oscillator
Transmitted pulses through 400 meters partially temperature 
stabilized fiber link
Close loop on fiber length feedback

~ 500 meters

For more info: A. Winter et al, FEL 2005
F. Ö. Ilday et al, CLEO 2006
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RF-Transmission over Stabilized Fiber Link

• Passive temperature  
stabilization of 500 m

• RF feedback for   
fiber link

• EDFL locked to         
2.856 GHz Bates 
master oscillator
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Jitter: Timing Stabilized Fiber Link

Fiber link extremely stable even for open loop (60 fs for 0.1 Hz-5 kHz)
Closing feedback loop reduces noise (12 fs for 0.1 Hz-5kHz)
No significant noise added at higher frequencies
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3. Optical-to-RF Synchronization
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Converting optical pulse train to RF-signal at remote locations
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Direct Extraction of RF from Pulse Train

Optical Pulse Train
(time domain)
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Phase

Typical AM-to-PM: 
1 – 10 ps/mW

Consistent with NIST result
Bartels et al, OL 30, 667 (2005).

Conversion of optical signal into electronic signal is the major
bottleneck in signal properties (noise, stability, and power).
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Optoelectronic Phase-Locked Loop (PLL)

Implementation of optical-RF phase detectors
for high-power, low-jitter and drift-free RF-signal regeneration 

Can we regenerate a high-power, low-jitter and drift-free RF-signal 
whose phase is locked to the optical pulse train?  
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Sagnac-Loop for Electro-Optic Sampling
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Phase
Modulator

Pulse train input

0

Output

∆Φ∆Φ = phase difference between counter
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Sagnac-Loop for Electro-Optic Sampling
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Sagnac-Loop for Electro-Optic Sampling
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To read out amplitude modulation
depth in the baseband. 

VCO

Sagnac-Loop for Electro-Optic Sampling
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Sagnac-Loop for Electro-Optic Sampling
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Demonstration Experiment
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In-Loop Phase Noise Measurement

Residual timing jitter = 3 fs ± 0.2 fs (1Hz-10MHz)
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4. Optical-to-Optical Synchronization
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Balanced Optical Cross-Correlation
Output

(650-1450nm)
Jitter

Analysis
SFG

Ti:sa

Cr:fo

3mm 
Fused Silica

SFG

SFG

Rep.-Rate
Control

(1/496nm = 1/833nm+1/1225nm). 

GD

Measured 0.3 fs jitter from 10mHz to 2.3 MHz
T. Schibli et al, Opt. Lett. 28, 947 (2003).
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Long-Term Locking Between Two Lasers
(Out-of-Loop Measurements)
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Summary and Outlook
Optical master oscillator: Ultrashort pulse trains from mode-locked 
lasers have excellent phase/timing noise properties. (~10 fs <1 fs)

Timing-stabilized fiber links: initial demonstration in the accelerator 
environment. Optical cross-correlation system in progress for low-jitter, 
drift-free operation. (~10 fs <1 fs)

Optical-to-RF synchronization: Balanced optical-RF phase detectors 
are proposed for femtosecond and potentially sub-femtosecond optical-to-
RF synchronization. (~3 fs <1 fs)

Optical-to-optical synchronization: Balanced optical cross-correlation. 
Long term stable sub-femtosecond precision is already achieved. (<1 fs)

A (sub-)femtosecond timing distribution and 
synchronization system for 4th generation light sources 

can be accomplished.
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Phase Noise (Jitter) of Transmitted Signal

Jitter between Bates MO and optical master laser ~30 fs (10 Hz..2 kHz) 
Jitter added by Link < 22fs
Total jitter added (1- 4 ) < 52 fs
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Commercial Low-Noise Microwave Oscillators

Very good microwave oscillators are commercially available 
for low phase noise in the low frequency range (< 1 kHz).
Eventually can lock to an optical standard for µHz-level stability.
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Why Optical Pulses (Mode-locked Lasers)?

RF encoded in pulse repetition rate, every harmonic can be extracted.
Suppress Brillouin scattering and undesired reflections.
Optical cross correlation can be used for link stabilization or for optical-to-
optical synchronization with other lasers
Pulses can be directly used to seed amplifiers at end stations.
Group delay is directly stabilized, not phase delay as would be the case in 
an interferometric link stabilization. (For L=1km and 10C, τphase-τgroup> 10fs, 
Polarization Mode Dispersion: 0.01-0.1ps/√km) 
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PZT-based 
fiber 

stretcher

Master Oscillator

SMF link 
1 - 5 km

isolator
50:50 

coupler

fine cross-
correlator

Timing-Stabilized Fiber Links

coarse
RF-lock

OC

Faraday
Mirror<100 fs

ultimately < 1 fs

K. Holman, et al. Opt. Lett. 30, 1225 (2005);  < 40 fs in 1Hz-100kHz

Assuming no fiber length fluctuations faster than T=2nL/c.
L = 1 km, n = 1.5   =>  T=1 µs,    fmax ~ 100 kHz
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Amplitude-to-Phase Conversion Measurement

Typical AM-to-PM: 
1 – 10 ps/mW

RIN~0.04% (10kHz-22MHz)
Δtexcess~ 5-20 fs

Limitations in direct photodetection
1. Amplitude-to-phase conversion 
2. Limited SNR by small-area high speed detector
3. High temperature sensitivity of photodiode

Conversion of optical signal into electronic signal is the major
bottleneck in signal properties (noise, stability, and power).

Consistent with NIST result
Bartels et al, OL 30, 667 (2005).
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Balanced Optical-RF Phase Detector

• Capable of driving high-power VCO  High-power regenerated RF-signal
• Scalable phase detection sensitivity  Low-jitter synchronization
• Fiber-based “balanced” scheme        Long-term drift-free operation 
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Scalability in Phase Detection Sensitivity
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Shot Noise Floor Scalability

Shot noise limited jitter = 0.5 fs (currently limited by other noise sources)
Scalable by increasing optical power and RF modulation depth
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Output
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