A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Huang, X.

Paper Title Page
THPLS083 Implementation of the Double-waist Chicane Optics in SPEAR 3 3472
 
  • W.J. Corbett, M. Cornacchia, T. Dao, D. Dell'Orco, D. Harrington, R.O. Hettel, X. Huang, Y. Nosochkov, T. Rabedeau, F.S. Rafael, H. Rarback, A. Ringwall, J.A. Safranek, B. Scott, J.J. Sebek, J. Tanabe, A. Terebilo, C. Wermelskirchen, M. Widmeyer
    SLAC, Menlo Park, California
  • M. Yoon
    POSTECH, Pohang, Kyungbuk
 
  The SPEAR 3 upgrade produced two new 7.6 m racetrack straight sections in the 18 cell, 234 m magnet lattice. One of these straights houses four PEP-II style mode-damped RF cavities. The other straight will accommodate two new small-gap insertion devices separated by 10mrad in a magnetic chicane configuration. A quadrupole triplet has been installed at the midpoint of the chicane and the vertical tune has been raised by an integer to create a 'double waist' optics with betay = 1.6m in the center of each ID. Furthermore, as part of the optics upgrade, betay in the four straights adjacent to the racetrack sections was reduced from 5m to 2.5m. In this paper, we describe the physical implementation of the double-waist chicane optics and initial operational results.  
THPLS085 Nonlinear Dynamics in the SPEAR 3 Double-waist Chicane 3475
 
  • J.A. Safranek, X. Huang, A. Terebilo
    SLAC, Menlo Park, California
 
  A quadrupole triplet has been included in the center of a 7.6 m long chicane in SPEAR 3 to create a novel and technically challenging 'double waist' optics with betay=1.6m at the center of each of two future small-gap insertion devices. The new optics also reduces betay to 2.5m in the four adjacent 4.8m straight sections. In this paper, we discuss key issues associated with design of the machine optics, insertion device compatibility issues, optimization of dynamic aperture and initial measurements of machine performance in the new configuration.