A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Horan, D.

Paper Title Page
MOPCH118 Wideband Low-output-impedance RF System for the Second Harmonic Cavity in the ISIS Synchrotron 321
 
  • Y. Irie
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • D. Bayley, G.M. Cross, I.S.K. Gardner, M.G. Glover, D. Jenkins, A. Morris, A. Seville, S.P. Stoneham, J.W.G. Thomason, T. Western
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.C. Dooling, D. Horan, R. Kustom, M.E. Middendorf, G. Pile
    ANL, Argonne, Illinois
  • S. Fukumoto, M. Muto, T. Oki, A. Takagi, S. Takano
    KEK, Ibaraki
 
  Wideband low-output-impedance RF system for the second harmonic cavity in the ISIS synchrotron has been developed by the collaboration between Argonne National Laboratory, US, KEK, Japan and Rutherford Appleton Laboratory, UK. Low output impedance is realized by the feedback from plate output to grid input of the final triode amplifier, resulting in less than 30 ohms over the frequency range of 2.7 - 6.2 MHz which is required for the second harmonic cavity. The vacuum tubes in the driver and final stages are both operated in class A, and a grid bias switching system is used on each tube to avoid unnecessary plate dissipations during a non-acceleration cycle. High power test was performed with a ferrite-loaded second harmonic cavity, where the bias current was swept at 50 Hz repetition rate. The maximum voltage of 12kV peak per accelerating gap was obtained stably at earlier period of an acceleration cycle. A beam test with this system is planned at the ISIS synchrotron in order to investigate how the low impedance system works under heavy beam loading conditions, and is capable of mitigating the space charge detuning at the RF trapping stage.  
MOPCH126 Accelerator Research on the Rapid Cycling Synchrotron at IPNS 339
 
  • G.E. McMichael, F.R. Brumwell, L. Donley, J.C. Dooling, W. Guo, K.C. Harkay, Q.B. Hasse, D. Horan, R. Kustom, M.K. Lien, M.E. Middendorf, M.R. Moser, S. Wang
    ANL, Argonne, Illinois
 
  The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a national user facility for neutron scattering. Neutrons are produced by 70 ns pulses of protons (~3x 1012 protons per pulse) impacting a depleted-uranium target at a pulse repetition rate of 30 Hz. Three accelerators in series (a 750 keV Cockcroft-Walton, 50 MeV Alvarez linac accelerating H- ions, and a 450 MeV rapid-cycling proton synchrotron) provide the beam that is directed to the target. New diagnostics and a third rf cavity that can be operated at either the fundamental or second harmonic of the ring frequency have recently been installed and an experimental program established to try to gain understanding of an instability that limits the charge-per-bunch in the RCS. This program will be described, and preliminary results presented.  
THPLS076 Status of RF Deflecting Cavity Design for the Generation of Short X-Ray Pulses in the Advanced Photon Source Storage Ring 3460
 
  • G.J. Waldschmidt, M. Borland, Y.-C. Chae, K.C. Harkay, D. Horan, A. Nassiri
    ANL, Argonne, Illinois
 
  The Advanced Photon Source (APS) at Argonne National Laboratory is exploring the possibility of using radio frequency deflection to generate x-ray radiation pulses on the order of 1 pico-second (Delta t - 70%) or less*. This scheme is based on a proposal by A. Zholents et al.** that relies on manipulating the transverse momenta of the electrons in a bunch by using an rf deflecting cavity to induce a longitudinally dependent vertical deflection of the beam. The beam will then travel through a number of undulators before arriving at a second set of deflecting cavities where the deflection is reversed such that the remainder of the storage ring is largely unperturbed***. Considerable effort has been expended on the design of a superconducting rf deflecting cavity operating in the S-Band at 2.8 GHz to address fundamental design issues including cavity geometry, deflecting voltage, rf power coupling, tuning, and damping of higher-order and lower-order modes. In this paper we present simulation results and analysis of an optimized superconducting rf deflecting cavity design for the APS storage ring.

*K. Harkay et al. Proceedings of 2005 PAC, Knoxville, TN, May 2005, p. 668. **A. Zholents et al. Nucl. Instrum. Methods, A425, 385 (1999). ***M. Borland and V. Sajaev. Proceedings of 2005 PAC, Knoxville, TN, May 2005, p. 3886.