A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Herr, W.

Paper Title Page
MOPLS001 Large Scale Beam-beam Simulations for the CERN LHC using Distributed Computing 526
 
  • W. Herr, E. McIntosh, F. Schmidt
    CERN, Geneva
  • D. Kaltchev
    TRIUMF, Vancouver
 
  We report on a large scale simulation of beam-beam effects for the CERN Large Hadron Collider (LHC). The stability of particles which experience head-on and long-range beam-beam effects was investigated for different optical configurations and machine imperfections. To cover the interesting parameter space required computing resources not available at CERN. The necessary resources were available in the LHC@home project, based on the BOINC platform. At present, this project makes more than 40000 hosts available for distributed computing. We shall discuss our experience using this system during a simulation campaign of more than six months and describe the tools and procedures necessary to ensure consistent results. The results from this extended study are presented and future plans are discussed.  
WEPCH095 Models to Study Multi-bunch Coupling through Head-on and Long-range Beam-beam Interactions 2137
 
  • T. Pieloni, W. Herr
    CERN, Geneva
 
  In the LHC almost 6000 bunches will collide in four interaction points where they experience head-on as well as clustered long range interactions. These lead to a coupling between all bunches and coherent beam-beam effects. For two colliding bunches this is well understood. However, for a large number of bunches colliding with different collision patterns, it results in a complex spectrum of oscillation frequencies with consequences for beam measurements and Landau damping. To study the coherent beam-beam modes, three complementary models have been developped and will be described in this report. Two of these methods rely on self-consistent multi-bunch and multi-particle tracking while the third is a semi-analytic model based on a complex matrix algorithm. The three methods together provide useful information about the beam-beam coupling of multi bunch beams and together provide a deeper insight into the underlying physics.