A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Heron, M.T.

Paper Title Page
THPCH113 The Diamond Light Source Control System 3068
 
  • M.T. Heron, M.G. Abbott, P.H. Amos, K.A.R. Baker, Y.S. Chernousko, T.M. Cobb, C.A. Colborne, P.N. Denison, I.J. Gillingham, A. Gonias, P. Hamadyk, S.C. Lay, M.A. Leech, P.J. Leicester, M. McClory, U.K. Pedersen, N.P. Rees, A.J. Rose, J.H. Rowland, E.L. Shepherd, S.J. Singleton, I. Uzun, K. Vijayan
    Diamond, Oxfordshire
  • S. Hunt
    PSI, Villigen
  • P.H. Owens
    CCLRC/DL, Daresbury, Warrington, Cheshire
 
  Diamond is a new 3rd generation synchrotron light source currently being commissioned in the UK. The control system for Diamond will be a site-wide monitoring and control system for the accelerators, beamlines and conventional facilities. This paper presents the design and implementation of the Diamond control system, which is based on the EPICS control system toolkit. It will present the detailed choice of hardware and software, the solutions realised for interfacing and control of the major technical systems of Diamond, together with progress on installation and commissioning.  
THPCH166 The Timing System for Diamond Light Source 3182
 
  • Y.S. Chernousko, A. Gonias, M.T. Heron
    Diamond, Oxfordshire
  • T. Korhonen
    PSI, Villigen
  • E. Pietarinen, J. Pietarinen
    MRF, Helsinki
 
  The Diamond timing system is the latest generation development of the design, principles and technologies currently implemented in the Advanced Photon Source and Swiss Light Source timing systems. It provides the ability to generate reference events, distribute them over a fibre-optic network, and decode and process them at the equipment to be controlled. The timing system is closely integrated within the Diamond distributed control system, which is based on EPICS. The Diamond timing system functionality and performance, and first operational experiences in using the timing system during the commissioning of the accelerators, are presented in this paper.  
THPLS029 Commissioning of the Booster Synchrotron for the Diamond Light Source 3344
 
  • V.C. Kempson, R. Bartolini, C. Christou, J.A. Dobbing, G.M.A. Duller, M.T. Heron, I.P.S. Martin, G. Rehm, J.H. Rowland, B. Singh
    Diamond, Oxfordshire
 
  The Diamond booster is a 158 m circumference, 5 Hz synchrotron which accelerates the 100 MeV electron beam from a linac to 3 GeV for full-energy injection into the Diamond storage ring. The booster has been commissioned in the first few months of 2006, following successful initial 100 MeV trials at the very end of 2005. The injection and ramping process, orbit correction and essential beam physics measurements are discussed as are extraction and beam transport to the storage ring.