A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hassanzadegan, H.

Paper Title Page
TUPCH141 New Developments for the RF System of the ALBA Storage Ring 1346
 
  • F. Pérez, B. B. Baricevic, D. Einfeld, H. Hassanzadegan, A. Salom, P. Sanchez
    ALBA, Bellaterra
 
  ALBA is a 3 GeV, 400 mA, 3rd generation Synchrotron Light Source that is in the construction phase in Cerdanyola, Spain. The RF System will have to provide 3.6 MV of accelerating voltage and restore up to 540 kW of power to the electron beam. For that six RF plants, working at 500 MHz, are foreseen. The RF plants will include several new developments: 1) DAMPY cavity: the normal conducting HOM damped cavity developed by BESSY and based in the EU design; six will be installed. 2) CaCo: A cavity combiner to add the power to two 80 kW IOTs to produce the 160 kW needed for each cavity. 3) WATRAX: A waveguide transition to coaxial, specially designed to feed the DAMPY cavities due to the geometrical and cooling constrains. 4) IQ LLRF: The low level RF will be based on the IQ modulation/demodulation technique, both analogue and digital approach are being pursued. This paper describes the Storage Ring RF System and reports about the status of these new developments.  
TUPCH194 Analogue and Digital Low Level RF for the ALBA Synchrotron 1468
 
  • F. Pérez, H. Hassanzadegan, A. Salom
    ALBA, Bellaterra
 
  ALBA is a 3 GeV, 400 mA, 3rd generation Synchrotron Light Source that is in the construction phase in Cerdanyola, Spain. The RF System will have to provide 3.6 MV of accelerating voltage and restore up to 540 kW of power to the electron beam. Two LLRF prototypes are being developed in parallel, both following the IQ modulation/demodulation technique. One is fully based on analogue technologies; the other is based on digital FPGA processing. The advantages of the IQ technique will be summarised and the control loop logic described. The hardware implementation in analogue as well as in digital format will be presented and first test results shown. The implementation of the same logic with both technologies will give us a perfect bench to compare, and use the better of them, for the final LLRF of the ALBA synchrotron.