A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Grieser, M.

Paper Title Page
MOPCH088 Ion Cooler Storage Ring, S-LSR 237
 
  • A. Noda, S. Fujimoto, M. Ikegami, T. Shirai, H. Souda, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • H. Fadil, M. Grieser
    MPI-K, Heidelberg
  • T. Fujimoto, S.I. Iwata, S. Shibuya
    AEC, Chiba
  • I.N. Meshkov, I.A. Seleznev, A.V. Smirnov, E. Syresin
    JINR, Dubna, Moscow Region
  • K. Noda
    NIRS, Chiba-shi
 
  Ion cooler and storage ring, S-LSR has been constructed. Its beam commissioning has been successfully performed since October, 2005 and electron beam cooling for 7 MeV proton beam has been performed with both flat and hollow spatial distributions. Effect of relative velocity sweep between electron and ion beams on the cooling time* has been confirmed. Based on the success to create the peaks in the energy spectrum of laser-produced ions, injection of laser-produced ions into S-LSR after rotation in the longitudinal phase space by an RF cavity synchronized to the pulse laser is under planning in order to apply electron cooling for such real laser produced hot ions. Three dimensional laser cooling satisfying the condition of 'tapered cooling' is also under investigation. 24Mg+ ions are to be laser-cooled only in the 'Wien Filter' in order to be cooled down to the appropriate energy according to their horizontal positions**. In parallel with the computer simulation, construction of the laser cooling system with use of ring dye laser accompanied with the second harmonics generator is now underway.

*H. Fadil et al. Nucl. Instr. & Meth. in Phys. Res. A517, 1-8 (2004).**A. Noda and M. Grieser, Beam Science and Technology, 9, 12-15 (2005).

 
TUPCH030 A Beam Diagnostics System for the Heidelberg Cryogenic Storage Ring CSR 1067
 
  • T. Sieber, H. Fadil, M. Grieser, A. Wolf, R. von Hahn
    MPI-K, Heidelberg
 
  The storage of rotationally non-excited molecules and highly charged ions requires lowest temperatures and vacuum pressures. At the MPI-K Heidelberg a cryogenic storage ring (CSR) for atomic and molecular physics experiments is under development. The CSR shall allow operation at temperatures of 2 K and pressures down to 1·10-15 mbar. The ring consists of electrostatic elements and has a circumference of ~35 m. It is housed inside a large cryostat, cooled by a (20W @ 2K) Helium refrigerator. To reach low UHV pressures already at room temperature the whole machine has to be bakeable up to 300°C. These boundary conditions, together with the low charge states, low velocities and low intensities (1nA-1muA) of the ions, put strong demands on the beam diagnostics system. Some beam parameters like profile, position and intensity cannot be measured with “standard” beam diagnostics technology. Here new or further developments are required. The paper gives a general view of the beam diagnostics concept for the CSR and shows in more detail possible solutions for measurement of beam position and beam profile.  
TUPLS061 Design of a Low Energy Electron Cooler for the Heidelberg CSR 1630
 
  • H. Fadil, M. Grieser, D. Orlov, A. Wolf
    MPI-K, Heidelberg
 
  The electrostatic Cryogenic Storage Ring (CSR) is currently being designed at MPI-K in Heidelberg. This ring will utilize electrostatic deflectors and focusing elements, and will store ions with kinetic energies in the range 20~300 keV (E/Q) to be mainly utilized in atomic and molecular physics experiments. The CSR will be equipped with a compact magnetic electron cooler, which will serve the double purpose of phase space compression of the stored ion beam as well as an electron target for recombination experiments. The cryogenic photocathode source, developed for the Heidelberg TSR, will be used to provide extremely cold magnetically guided electron beams. The maximum cooling electron energy is 165 eV and the usual operation energy for 20 keV protons will be about 10 eV. The cooler will fit in the 2.8 m straight section of the ring. The device will be installed inside the outer vacuum chamber of the CSR, and the magnetic confinement of the electrons will be provided with high temperature superconducting coils. The design of the magnets of the CSR electron cooler will be presented in this paper.  
TUPLS063 Layout of the USR at FLAIR 1636
 
  • C.P. Welsch, C.P. Welsch
    CERN, Geneva
  • M. Grieser, J. Ullrich, A. Wolf
    MPI-K, Heidelberg
 
  The Facility for Low-energy Antiproton and Ion Research (FLAIR) and a large part of the wide physics program decisively rely on new experimental techniques to cool and slow down antiprotons to 20 keV, namely on the development of an ultra-low energy electrostatic storage ring (USR). The whole research program connected with anti-matter/matter interactions is only feasible if such a machine will be realized For the USR to fulfil its key role in the FLAIR project, the development of novel and challenging methods and technologies is necessary: the combination of the electrostatic storage mode with a deceleration of the stored ions from 300 keV to 20 keV, electron cooling at all energies in both longitudinal and transverse phase-space, bunching of the stored beam to ultra-short pulses in the nanosecond regime and the development of an in-ring reaction microscope for antiproton-matter rearrangement experiments. In this contribution, the layout and the expected beam parameters of the USR are presented and its role within FLAIR described. The machine lattice and the cooler parameters are summarized.  
TUPLS064 Design and Commissioning of a Compact Electron Cooler for the S-LSR 1639
 
  • H. Fadil, S. Fujimoto, A. Noda, T. Shirai, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • T. Fujimoto, S.I. Iwata, S. Shibuya
    AEC, Chiba
  • M. Grieser
    MPI-K, Heidelberg
  • K. Noda
    NIRS, Chiba-shi
  • I.A. Seleznev, E. Syresin
    JINR, Dubna, Moscow Region
 
  The ion cooler ring S-LSR has been constructed and commissioned in October 2005. The ring successfully stored a 7 MeV proton beam. The S-LSR is equipped with a compact-electron cooler which has a cooling solenoid length of 0.8 m, a toroid bending radius of 0.25 m and maximum magnetic field in the cooling section of 0.5 kG. The commissioning of the electron cooler was carried out with successful observation of both longitudinal and horizontal cooling of the proton beam. By varying the electric potential on the Pierce electrode in the gun, we have investigated the possibility of generating a hollow shaped electron beam, and studied its effect on the electron cooling process. Also the effect of the electrostatic deflector, installed in the toroid section in order to compensate the drift motion of the secondary electrons, was investigated. The design and results of the commissioning of the compact electron cooler are presented.  
WEPCH018 Finite Elements Calculations of the Lattice and Ring Acceptance of the Heidelberg CSR 1960
 
  • H. Fadil, M. Grieser, A. Wolf, R. von Hahn
    MPI-K, Heidelberg
 
  A new Cryogenic Storage Ring (CSR) is currently being designed at MPI-K in Heidelberg. This electrostatic ring, which will store ions in the 20~300 keV energy range (E/Q), has a total circumference of 35.2 m and a straight section length of 2.8 m. The ring design was at first carried out with the optics code MAD in the first order approximation. Further investigation of the optics was performed with the finite elements electrostatic code TOSCA. The individual elements of the CSR (deflectors and quadrupoles) were calculated then a model of the entire ring was simulated with successful storage (tracking) of 20keV protons for many turns. The lattice parameters thus obtained were compared with the MAD results and show good agreement. The dynamic ring acceptance was also calculated for the standard operating point.