A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ghigo, A.

 
Paper Title Page
MOPCH024 Future Seeding Experiments at SPARC 95
 
  • L. Giannessi, S. Ambrogio, F. Ciocci, G. Dattoli, A. Doria, G.P. Gallerano, E. Giovenale, M. Quattromini, A. Renieri, C. Ronsivalle, I.P. Spassovsky
    ENEA C.R. Frascati, Frascati (Roma)
  • D. Alesini, M.E. Biagini, R. Boni, M. Castellano, A. Clozza, A. Drago, M. Ferrario, V. Fusco, A. Gallo, A. Ghigo, M. Migliorati, L. Palumbo, C. Sanelli, F. Sgamma, B. Spataro, S. Tomassini, C. Vaccarezza, C. Vicario
    INFN/LNF, Frascati (Roma)
  • M. Bougeard, B. Carré, D. Garzella, M. Labat, G. Lambert, H. Merdji, P. Salieres, O. Tcherbakoff
    CEA, Gif-sur-Yvette
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • A. Dipace, E. Sabia
    ENEA Portici, Portici (Napoli)
  • M. Mattioli, P. Musumeci, M. Petrarca
    Università di Roma I La Sapienza, Roma
  • M. Nisoli, G. Sansone, S. Stagira, S. de Silvestri
    Politecnico/Milano, Milano
  • L. P. Poletto, G. T. Tondello
    Univ. degli Studi di Padova, Padova
  • L. Serafini
    INFN-Milano, Milano
 
  Sources based on High order Harmonics Generated in gases (HHG) with high power Ti:Sa lasers pulses represent promising candidates as seed for FEL amplifiers for several reasons, as spatial and temporal coherence, wavelength tunability and spectral range, which extends down to the nm wavelength scale. This communication describes the research work plan that is under implementation at the SPARC FEL facility in the framework of the EUROFEL programme. The main goal of the collaboration is to study and test the amplification and the FEL harmonic generation process of an input seed signal obtained as higher order harmonics generated both in crystals (400 nm and 266 nm) and in gases (266 nm, 160 nm, 114 nm). The SPARC FEL can be configured to test several cascaded FEL layouts that will be analysed in this contribution.  
MOPCH028 Status of the SPARX FEL Project 107
 
  • C. Vaccarezza, D. Alesini, M. Bellaveglia, S. Bertolucci, M.E. Biagini, R. Boni, M. Boscolo, M. Castellano, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, D. Filippetto, V. Fusco, A. Gallo, A. Ghigo, S. Guiducci, M. Migliorati, L. Palumbo, L. Pellegrino, M.A. Preger, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stella, F. Tazzioli, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • F. Alessandria, A. Bacci, F. Broggi, C. De Martinis, D. Giove, M. Mauri
    INFN/LASA, Segrate (MI)
  • L. Catani, E. Chiadroni, A. Cianchi, C. Schaerf
    INFN-Roma II, Roma
  • S. Cialdi, C. Maroli, V. Petrillo, M. Rome, L. Serafini
    INFN-Milano, Milano
  • F. Ciocci, G. Dattoli, A. Doria, F. Flora, G.P. Gallerano, L. Giannessi, E. Giovenale, G. Messina, P.L. Ottaviani, G. Parisi, L. Picardi, M. Quattromini, A. Renieri, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • P. Emma
    SLAC, Menlo Park, California
  • L. Ficcadenti, A. Mostacci
    Rome University La Sapienza, Roma
  • M. Mattioli
    Università di Roma I La Sapienza, Roma
  • P. Musumeci
    INFN-Roma, Roma
  • S. Reiche, J.B. Rosenzweig
    UCLA, Los Angeles, California
 
  The SPARX project consists in an X-ray-FEL facility jointly supported by MIUR (Research Department of Italian Government), Regione Lazio, CNR, ENEA, INFN and Rome University Tor Vergata. It is the natural extension of the ongoing activities of the SPARC collaboration. The aim is the generation of electron beams characterized by ultra-high peak brightness at the energy of 1 and 2 GeV, for the first and the second phase respectively. The beam is expected to drive a single pass FEL experiment in the range of 13.5-6 nm and 6-1.5 nm, at 1 GeV and 2 GeV respectively, both in SASE and SEEDED FEL configurations. A hybrid scheme of RF and magnetic compression will be adopted, based on the expertise achieved at the SPARC high brightness photoinjector presently under commissioning at Frascati INFN-LNF Laboratories. The use of superconducting and exotic undulator sections will be also exploited. In this paper we report the progress of the collaboration together with start to end simulation results based on a combined scheme of RF compression techniques.  
MOPCH029 Status of the SPARC Project 110
 
  • P. Musumeci, D. Levi, M. Mattioli, G. Medici, D. Pelliccia, M. Petrarca
    Università di Roma I La Sapienza, Roma
  • D. Alesini, M. Bellaveglia, S. Bertolucci, R. Boni, M. Boscolo, M. Castellano, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, M. Incurvati, C. Ligi, F. Marcellini, M. Migliorati, A. Mostacci, L. Palumbo, L. Pellegrino, M.A. Preger, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • F. Alessandria, A. Bacci, I. Boscolo, F. Broggi, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, M. Mauri, V. Petrillo, M. Rome, A.R. Rossi, L. Serafini
    INFN-Milano, Milano
  • L. Catani, E. Chiadroni, A. Cianchi, E. Gabrielli, S. Tazzari
    INFN-Roma II, Roma
  • F. Ciocci, G. Dattoli, A. Dipace, A. Doria, G.P. Gallerano, L. Giannessi, E. Giovenale, G. Messina, P.L. Ottaviani, S. Pagnutti, L. Picardi, M. Quattromini, A. Renieri, G. Ronci, C. Ronsivalle, M. Rosetti, E. Sabia, M. Sassi, A. Torre, A. Zucchini
    ENEA C.R. Frascati, Frascati (Roma)
  • A. Perrone
    INFN-Lecce, Lecce
  • S. Reiche, J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
 
  The SPARC Project is starting the commissioning of its photo-injector. RF gun, RF sources, RF network and control, power supplies, emittance meter, beam diagnostics and control to measure the RF gun beam are installed. The photocathode drive laser has been characterized in terms of pulse shape and quality. We expect to conduct beam measurements at RF gun exit in the next future and consequently to start the installation of accelerating sections. The design of the 12 m undulator for the FEL experiment has been completed and the first undulator section out of 6 is under construction: we expect to characterize it at Frascati ENEA laboratory within the next months. SPARC as a facility will host FEL experiments using SASE, seeding and non-linear resonant harmonics. Additional R&D on X-band and S-band structures for velocity bunching are in progress, as well as studies on new photocathode materials and exotic undulator designs. We also present studies on solenoid field defects, beam based alignments, exotic electron bunch production (blow-out of short laser pulses or intensity modulated laser pulses). The possible use of segmented superconducting micro-undulators will be discussed too.  
MOPLS090 Design of a Strip-line Extraction Kicker for CTF3 Combiner Ring 762
 
  • I. Rodriguez, F. Toral
    CIEMAT, Madrid
  • L. García-Tabarés
    CEDEX, Madrid
  • A. Ghigo, F. Marcellini
    INFN/LNF, Frascati (Roma)
 
  The new CLIC test facility (CTF3) is the latest stage to prove the technical feasibility of the CLIC project. An extraction kicker is necessary for the combiner ring, and it will be a strip-line type device due to lower coupling impedances and straightforward fabrication. The field uniformity together with a correct beam dynamics are the most challenging issues of this design. The main parameters of the kicker are analytically calculated using standard analytic formulae. The numeric modelling and simulation of several possible straight sections are reported, and the characteristic impedance is matched with the 50 Ω load. The field homogeneity, the kick angle and the scattering parameters are calculated in a 3D finite element model. Several manufacturing issues for the first prototype are also outlined.  
MOPLS093 Commissioning Status of the CTF3 Delay Loop 771
 
  • R. Corsini, S. Doebert, F. Tecker, P. Urschütz
    CERN, Geneva
  • D. Alesini, C. Biscari, B. Buonomo, A. Ghigo, F. Marcellini, B. Preger, M. Serio, A. Stella
    INFN/LNF, Frascati (Roma)
 
  The CLIC Test Facility CTF3, built at CERN by an international collaboration, aims at demonstrating the feasibility of the CLIC scheme by 2010. In particular, one of the main goals is to study the generation of high-current electron pulses by interleaving bunch trains in delay lines and rings using transverse RF deflectors. This will be done in the 42 m long delay loop, built under the responsibility of INFN/LNF, and in the 84 m long combiner ring that will be installed in 2006. The delay loop installation was completed, and its commissioning started at the end of 2005. In this paper the commissioning results are presented, including the first tests of beam recombination.  
WEYPA03 CLIC Feasibility Study in CTF3 1862
 
  • A. Ghigo
    INFN/LNF, Frascati (Roma)
 
  After a reminder of the CLIC scheme towards multi-TeV Linear Collider and of the main challenges of this novel technology, the presentation will focus on the CTF3 test facility presently under construction at CERN to address all key issues in a multi-lateral collaboration. It will present the status of the facility and of the technological developments, especially the high field accelerating structures and the RF power production, the performances already achieved as well as the plans and schedule for the future. It will finally compare the CTF3 results with those foreseen by the theory and the corresponding benchmarking of CLIC simulations.  
slides icon Transparencies
MOPLS028 DAFNE Status Report 604
 
  • A. Gallo, D. Alesini, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, B. Buonomo, A. Clozza, G.O. Delle Monache, E. Di Pasquale, G. Di Pirro, A. Drago, A. Ghigo, S. Guiducci, M. Incurvati, P. Iorio, C. Ligi, F. Marcellini, C. Marchetti, G. Mazzitelli, C. Milardi, L. Pellegrino, M.A. Preger, L. Quintieri, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, S. Tomassini, C. Vaccarezza, M. Vescovi, M. Zobov
    INFN/LNF, Frascati (Roma)
  • G. Benedetti
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • L. Falbo
    INFN-Pisa, Pisa
  • J.D. Fox, P. Raimondi, D. Teytelman
    SLAC, Menlo Park, California
  • E. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov
    BINP SB RAS, Novosibirsk
 
  The operation of DAFNE, the 1.02 GeV c.m. e+e- collider of the Frascati National Laboratory with the KLOE detector, started in April 2004 has been concluded at the end of March 2006 with a total delivered luminosity of 2 fb-1 on the peak of the Phi resonance, 0.2 fb-1 off peak and a high statistics scan of the resonance. The best performances of the collider during this run have been a peak luminosity of 1.5 1032 cm-2s-1 and a daily delivered luminosity of 10 pb-1. The KLOE detector has been removed from one of the two interaction regions and its low beta section substituted with a standard magnetic structure, allowing for an easy vertical separation of the beams, while the FINUDA detector has been moved onto the second interaction point. Several improvements on the rings have also been implemented and are described together with the results of machine studies aimed at improving the collider efficiency and testing new operating conditions.  
WEPLS021 The PLASMONX Project for Advanced Beam Physics Experiments 2439
 
  • L. Serafini, A. Bacci, R. Bonifacio, M. Cola, C. Maroli, V. Petrillo, N. Piovella, R. Pozzoli, M. Rome, A.R. Rossi, L. Volpe
    INFN-Milano, Milano
  • D. Alesini, M. Bellaveglia, S. Bertolucci, R. Boni, M. Boscolo, M. Castellano, A. Clozza, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, M. Incurvati, C. Ligi, F. Marcellini, M. Migliorati, A. Mostacci, L. Palumbo, L. Pellegrino, M.A. Preger, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • F. Alessandria, F. Broggi, C. De Martinis, D. Giove, M. Mauri
    INFN/LASA, Segrate (MI)
  • W. Baldeschi, A. Barbini, M. Galimberti, A. Giulietti, A. Gizzi, P. Koester, L. Labate, S. Laville, A. Rossi, P. Tomassini
    CNR/IPP, Pisa
  • U. Bottigli, B. Golosio, P.N. Oliva, A. Poggiu, S. Stumbo
    INFN-Cagliari, Monserrato (Cagliari)
  • C.A. Cecchetti, D. Giulietti
    UNIPI, Pisa
  • D. Levi, M. Mattioli, G. Medici, D. Pelliccia, M. Petrarca
    Università di Roma I La Sapienza, Roma
  • P. Musumeci
    INFN-Roma, Roma
 
  The Project PLASMONX is well progressing into its design phase and has entered as well its second phase of procurements for main components. The project foresees the installation at LNF of a Ti:Sa laser system (peak power > 170 TW), synchronized to the high brightness electron beam produced by the SPARC photo-injector. The advancement of the procurement of such a laser system is reported, as well as the construction plans of a new building at LNF to host a dedicated laboratory for high intensity photon beam experiments (High Intensity Laser Laboratory). Several experiments are foreseen using this complex facility, mainly in the high gradient plasma acceleration field and in the field of mono-chromatic ultra-fast X-ray pulse generation via Thomson back-scattering. We present an innovative scheme of external injection of the SPARC beam into laser wake-field driven plasma waves. Detailed numerical simulations have been carried out to study the generation of short electron bunches, to be injected into plasma waves driven with adiabatically variable density in order to compress the bunch at injection and further accelerate it by preserving a small energy spread and good beam quality.  
THPCH151 Commissioning of the Laser System for SPARC Photoinjector 3146
 
  • C. Vicario, M. Bellaveglia, D. Filippetto, A. Gallo, G. Gatti, A. Ghigo
    INFN/LNF, Frascati (Roma)
  • P. Musumeci, M. Petrarca
    INFN-Roma, Roma
 
  In this paper we report the commissioning of the SPARC photoinjector laser system. In the high brightness photoinjector the quality of the electron beam is directly related to the features of the laser pulse. In fact the temporal pulse shape, the temporization and the transverse distribution of the electron beam is determined by the incoming laser pulse. The SPARC laser system is based on an amplified Ti:Sapphire active medium and the pulse shape is imposed by a programmable acousto-optics dispersive filter. The transfer-line has been designed to reduce the angular jitter and to preserve to the cathode the temporal and spatial features of the laser pulse. The laser system has been integrated with the accelerator apparatus. The diagnostics and the control system has been completed. We present the measured performances and the simulations we carried out.  
THPCH153 Production of Temporally Flat Top UV Laser Pulses for SPARC Photoinjector 3152
 
  • M. Petrarca, P. Musumeci
    INFN-Roma, Roma
  • I. Boscolo, S. Cialdi
    INFN-Milano, Milano
  • G. Gatti, A. Ghigo, C. Vicario
    INFN/LNF, Frascati (Roma)
  • M. Mattioli
    Università di Roma I La Sapienza, Roma
 
  In the SPARC photoinjector, the amplified Ti:Sa laser system is conceived to produce an UV flat top pulse profile required to reduce the beam emittance by minimizing the non-linear space charge effects in the photoelectrons pulse. Beam dynamic simulations indicate that the optimal pulse distribution must be flat top in space and time with 10 ps FWHM duration, 1 ps of rise and fall time and a limited ripple on the plateau. In a previous work~\cite{loose} it was demonstrated the possibility to use a programmable dispersive acousto-optics (AO) filter to achieve pulse profile close to the optimal one. In this paper we report the characterization of the effects of harmonics conversion on the pulse temporal profile. A technique to overcome the harmonics conversion distortions on the laser pulses at the fundamental wavelength in order to obtain the target pulse profile is explained too. Measurements and simulations in the temporal and spectral domain at the fundamental laser wavelength and at the second and third harmonics are presented in order to validate our work. It is also described a time diagnostic device for the UV pulses.

*H. Loos et al. "Temporal E-Beam Shaping in an S-Band Accelerator", Proc. Particle Accelerator Conference, p.642, 2005, Knoxville, TN, USA.