A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Gai, W.

Paper Title Page
WEPLS039 Developments on a Diamond-based Cylindrical Dielectric Accelerating Structure 2460
 
  • A. Kanareykin, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
  • M.E. Conde, W. Gai, J.G. Power
    ANL, Argonne, Illinois
  • P. Schoessow
    Tech-X, Boulder, Colorado
 
  Developments on a high gradient diamond-based cylindrical dielectric loaded accelerator (DLA) is presented. A diamond-loaded DLA can potentially sustain accelerating gradients far in excess of the limits experimentally observed for conventional metallic accelerating structures. The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric accelerators: high RF breakdown level, extremely low dielectric losses and the highest available thermoconductive coefficient. We used the hot-filament Chemical Vapor Deposition (CVD) process to produce high quality 5-10 cm long cylindrical diamond layers. Our collaboration has also been developing a new method of CVD diamond surface preparation that reduces the secondary electron emission coefficient below unity. Special attention was paid to the numerical optimization of the coupling section, where the surface magnetic and electric fields were minimized relative to the accelerating gradient and within known metal surface breakdown limits.  
WEPLS042 Design and Experimental Investigation of an X-band Multilayer Dielectric Accelerating Structure 2466
 
  • A. Kanareykin, C.-J. Jing, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio
  • W. Gai, J.G. Power
    ANL, Argonne, Illinois
 
  A new project to significantly improve the efficiency of high gradient DLA structures is presented. A multilayer DLA where the single dielectric layer is replaced by a multiple coaxial layers of differing permittivity have been developed. The power attenuation in the multilayer structure is reduced by the Bragg Fiber principle where the dielectric layers are used to create multiple reflections in order to confine the accelerating mode fields for the most part in the dielectric, reducing the axial current on the conducting outer boundary. A design for an X-band multilayer structure operating in the TM03 mode using alternating dielectric layers with permittivities of 38 and 9.7 is discussed. In order to transfer the RF from the rectangular waveguide to the cylindrical one at TM03 mode, a special coupling and mode conversion scheme was developed. A prototype structure has been constructed and bench test results of the multilayer 11.424 GHz accelerator is presented.