A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Eliasson, P.

Paper Title Page
MOPLS091 First Design of a Post Collision Line for CLIC at 3 TeV 765
 
  • V.G. Ziemann, T. J. C. Ekelof, A. Ferrari
    UU/ISV, Uppsala
  • P. Eliasson
    CERN, Geneva
 
  As part of the Post collision diagnostic task of the ILPS work-package of EuroTeV we discuss a design of the beam line between the interaction point and the beam dump for CLIC with a center-of-mass energy of 3 TeV. The design is driven by the requirement to transport the beam and all secondaries such as beamstrahlung and coherent pairs to the beam dump with minimal losses. Moreover, we discuss the integration of novel diagnostic methods into the post collision beam line based on the detection of coherent pairs and monitoring the beam profile of the primary beam.  
MOPLS094 Luminosity Tuning at the Interaction Point 774
 
  • P. Eliasson, M. Korostelev, D. Schulte, R. Tomas, F. Zimmermann
    CERN, Geneva
 
  Minimisation of the emittance in a linear collider is not enough to achieve optimal performance. For optimisation of the luminosity, tuning of collision parameters such as angle, offset, waist, etc. is needed, and a fast and reliable tuning signal is required. In this paper tuning knobs are presented, and their optimisation using beamstrahlung as a tuning signal is studied.  
MOPLS098 Study of an ILC Main Linac that Follows the Earth Curvature 786
 
  • D. Schulte, P. Eliasson, A. Latina
    CERN, Geneva
  • F. Poirier, N.J. Walker
    DESY, Hamburg
 
  In the base line configuration, the tunnel of the ILC will follow the earth curvature. The emittance growth in a curved main linac has been studied, including static and dynamic imperfections. These include effects due to current ripples in the power supplies of the steering coils, the impact of the beam position monitor scale errors.  
MOPLS099 A Study of Failure Modes in the ILC Main Linac 789
 
  • D. Schulte, P. Eliasson, A. Latina
    CERN, Geneva
  • Eckhard. Elsen, D. Kruecker, F. Poirier, N.J. Walker, G.X. Xia
    DESY, Hamburg
 
  Failures in the ILC can lead to beam loss or even damage the machine. Also failures that do not lead to beam loss can affect the luminosity performance, in particular since some time is required to recover from them. In the paper a number of different failures is being investigated and the impact on the machine performance is being studied.  
MOPLS130 Implications of a Curved Tunnel for the Main Linac of CLIC 864
 
  • A. Latina, D. Schulte
    CERN, Geneva
  • P. Eliasson
    Uppsala University, Uppsala
 
  Preliminary studies of a linac that follows the earth's curvature are presented for the CLIC main linac. The curvature of the tunnel is modeled in a realistic way by use of geometry changing elements. The emittance preservation is studied for a perfect machine as well as taking into account imperfections. Results for a curved linac are compared with those for a laser-straight machine.  
WEPCH140 Recent Improvements of PLACET 2251
 
  • A. Latina, H. Burkhardt, L. Neukermans, G. Rumolo, D. Schulte, R. Tomas
    CERN, Geneva
  • P. Eliasson
    Uppsala University, Uppsala
  • J. Resta-López
    IFIC, Valencia
 
  The tracking code PLACET is used to simulate the beam transport in linear colliders from the damping ring to the interaction point and beyond. Recent improvements of the code are presented. They include the possibility to simulate bunch compressors and to use parallel computer systems.