A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Clarke, J.A.

Paper Title Page
MOPCH066 The Conceptual Design of 4GLS at Daresbury Laboratory 181
 
  • J.A. Clarke
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  4GLS is a novel next generation proposal for a UK national light source to be sited at Daresbury Laboratory, based on a superconducting energy recovery linac (ERL) with both high average current photon sources (undulators and bending magnets) and three high peak current free electron lasers. Key features are a high gain, seeded FEL amplifier to generate XUV radiation and the prospect of advanced research arising from unique combinations of sources with femtosecond pulse structure. The conceptual design is now completed and a CDR recently published. The 4GLS concept is summarised, highlighting how the significant design challenges have been addressed, and the project status and plans explained.  
MOPCH070 The Status of the Daresbury Energy Recovery Prototype Project 187
 
  • D.J. Holder, J.A. Clarke, P.A. McIntosh, M.W. Poole, S.L. Smith
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Bliss
    CCLRC/DL, Daresbury, Warrington, Cheshire
  • E.A. Seddon
    CCLRC/DL/SRD, Daresbury, Warrington, Cheshire
 
  The major component of the UK's R&D programme towards an advanced energy recovery linac-based light source facility is a 35 MeV technology demonstrator called the energy recovery linac prototype (ERLP). This is based on a combination of a DC photocathode electron gun, a superconducting linac operated in energy recovery mode and an IR FEL. The current status of the of this project is presented, including the construction and commissioning progress and plans for the future exploitation of this scientific and technical R&D facility.  
MOPLS072 Status of the HeLiCal Contribution to the Polarised Positron Source for the International Linear Collider 715
 
  • J.A. Clarke, O.B. Malyshev, D.J. Scott
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • I.R. Bailey, P. Cooke, J.B. Dainton, L.I. Malysheva
    Liverpool University, Science Faculty, Liverpool
  • D.P. Barber
    DESY, Hamburg
  • E. Baynham, T.W. Bradshaw, A.J. Brummitt, F.S. Carr, Y. Ivanyushenkov, J. Rochford
    CCLRC/RAL, Chilton, Didcot, Oxon
  • G.A. Moortgat-Pick
    Durham University, Durham
 
  The baseline positron source for the International Linear Collider is a helical undulator-based design, which can generate unprecedented quantities of polarised positrons. A major thrust of the global design in this area is led by the UK-based HeLiCal collaboration. The collaboration takes responsibility for the design and prototyping of the helical undulator itself, which is a highly demanding short period device with very small aperture, and also leads the start to end simulations of the polarised particles to ensure that the high polarisation levels generated are maintained from the source, right through the beam transport systems and up to the interaction point itself. This paper will provide an update on the work of the collaboration, focusing on these two topic areas, and will also discuss future plans.  
MOPLS118 Magnetic Modelling of a Short-period Superconducting Helical Undulator for the ILC Positron Source 840
 
  • J. Rochford, E. Baynham, T.W. Bradshaw, F.S. Carr
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • I.R. Bailey, L.I. Malysheva
    Cockcroft Institute, Warrington, Cheshire
  • D.P. Barber
    DESY, Hamburg
  • A.J. Brummitt, Y. Ivanyushenkov
    CCLRC/RAL, Chilton, Didcot, Oxon
  • J.A. Clarke, O.B. Malyshev, D.J. Scott
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Cooke, J.B. Dainton
    Liverpool University, Science Faculty, Liverpool
  • G.A. Moortgat-Pick
    Durham University, Durham
 
  A positron source utilising undulators is now defined as the baseline option for the International Linear Collider (ILC). The ILC requires a short period undulator, as close to 10mm as possible, that is capable of producing 10 MeV photons. The HeliCal collaboration in the UK has undertaken a programme to design, develop and produce a prototype undulator. As part of the programme, the group has used the OPERA software package to perform the magnetic design of the undulator. The design has addressed several issues, including the effect of magnetic material for the undulator former, optimal winding geometry, the magnetic flux inside the superconductor and its variation with undulator period and the winding bore. This paper summarizes the results of both the 2d and the 3d magnetic simulations.  
MOPLS069 Development of a Superconducting Helical Undulator for the ILC Positron Source 706
 
  • Y. Ivanyushenkov, E. Baynham, T.W. Bradshaw, A.J. Brummitt, F.S. Carr, J. Rochford
    CCLRC/RAL, Chilton, Didcot, Oxon
  • I.R. Bailey, D.P. Barber, J.A. Clarke, J.B. Dainton, O.B. Malyshev, D.J. Scott, B.J.A. Shepherd
    Cockcroft Institute, Warrington, Cheshire
  • P. Cooke, L.I. Malysheva
    Liverpool University, Science Faculty, Liverpool
  • G.A. Moortgat-Pick
    CERN, Geneva
 
  An undulator positron source has been recently selected by the International Linear Collider (ILC) community as a baseline. For the ILC a helical undulator capable of producing 10 MeV photons and with a period as close as possible to 10 mm is required. The HeliCal collaboration in the UK is looking at the merits of both permanent magnet and superconducting technologies for the design of a helical undulator. For the superconducting option, several prototypes have been built and tested. This paper details the design, construction and test results of the first superconducting prototypes.  
WEPLS032 Spin Tracking at the ILC 2454
 
  • G.A. Moortgat-Pick, I.R. Bailey, D.P. Barber, J.A. Clarke, J.B. Dainton, O.B. Malyshev, G.A. Moortgat-Pick, D.J. Scott
    Cockcroft Institute, Warrington, Cheshire
  • E. Baynham, T.W. Bradshaw, A.J. Brummitt, F.S. Carr, Y. Ivanyushenkov, J. Rochford
    CCLRC/RAL, Chilton, Didcot, Oxon
  • P. Cooke, L.I. Malysheva
    Liverpool University, Science Faculty, Liverpool
 
  Polarized beams will play a key role in the physics programme at the International Linear Collider (ILC). It is expected that the electron and positron sources will be able to produce beams with polarizations of about 90% and 60% respectively. However, to obtain accurate measurements it is essential to have precise knowledge and control of the polarization at the interaction point itself. It follows that the theoretical calculations used for spin tracking must be guaranteed to match the anticipated 0.1% relative measurement uncertainty of the polarimeters. To meet this need, the heLiCal collaboration is developing a computer simulation to track the evolution of the polarization of bunches of electrons and positrons from the sources to the interaction point. We have studied the beam spin dynamics throughout the ILC including spin precession and radiative spin-flip processes in the positron source, damping rings, beam delivery system and the interaction region. We present the result of these studies with special emphasis on the impact of new theoretical calculations for the CAIN bunch-bunch simulation including full spin correlations and higher-order contributions.  
THPLS126 Construction and Testing of a Pair of Focusing Undulators for ALPHA-X 3580
 
  • B.J.A. Shepherd, J.A. Clarke
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  ALPHA-X is a four-year project shared between several research groups in the UK to build a laser-plasma accelerator and produce coherent short-wavelength radiation in an FEL. A pair of undulators for the project have been designed and built by ASTeC at Daresbury Laboratory. The undulators are 1.5m long, 100 period permanent magnet devices with a minimum gap of 3.5mm, a peak field of 0.7T and a two-plane focusing design. The devices were modelled using RADIA, and data from the magnet block manufacturer was used to sort the blocks. To optimise the trajectory in the real devices, magnetic testing (using Hall probe and flipping coil techniques) and block swapping has been performed in Daresbury's dedicated insertion device test facility. The measurements agree well with the models, and the undulators will perform well within specification.