A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Bechtold, A.

Paper Title Page
TUPLS039 Proposal of a Normal Conducting CW-RFQ for the EURISOL Post-accelerator and a Dedicated Beta-beam Linac Concept 1580
 
  • A. Bechtold, H. Podlech
    IAP, Frankfurt-am-Main
 
  A combination of three superconducting RFQs has been proposed for the EURISOL post accelerator layout. At least the first RFQ of this triplet could be replaced by a normal conducting continuous wave (c.w.) device. Efficient cooling systems have already been designed and applied to existing machines at the IAP in Frankfurt. Preliminary electrode and cavity designs can be presented. Since a parallel use for beta-beam applications was intended, we have optimized the design not only for heavy ion applications with negligible beam currents at c.w. but also for lighter ions with currents up to 7.5 mA at pulsed operation. More recent investigations on beta-beams came up with currents around 50 mA, which then would make a separate linac solution for beta-beams necessary. We worked out some preliminary design suggestions for such a dedicated 100 MeV/u machine.  
WEPCH117 Beam Dynamics of an Integrated RFQ-drifttube-combination 2191
 
  • A. Bechtold, M. Otto, A. Schempp
    IAP, Frankfurt-am-Main
 
  In the frame of a collaboration with the GSI in Darmstadt an RFQ-Drifttube-Combination for the Heidelberg cancer therapy center HICAT has been designed, built and successfully beam tested at the IAP Frankfurt. The integration and combination of both an RFQ and a rebunching drifttube unit inside a common cavity forming one single resonant RF-structure has been realized for the first time with this machine. The results of the beam measurements and questions about the beam dynamics simulations of such a combination have been investigated in detail with the code RFQSIM.  
TUPLS038 The MAFF IH-RFQ Test Stand at the IAP Frankfurt 1577
 
  • A. Bechtold, D. Habs
    LMU, München
  • J. Fischbach, U. Ratzinger, J. Rehberg, M. Reichwein, A. Schempp
    IAP, Frankfurt-am-Main
  • J. Haeuser
    NTG Neue Technologien GmbH & Co KG, Gelnhausen
  • O.K. Kester
    GSI, Darmstadt
 
  The IH-type RFQ for the MAFF project at the LMU in Munich is presently under construction and will be integrated into a beam test stand at the IAP in Frankfurt. It is the second RFQ following the IH resonator concept and the first one that can be directly compared to a very similar 4-rod type machine, namely the REX-ISOLDE RFQ at CERN. The MAFF RFQ has been designed to accelerate rare isotope beams (RIBs) with mass to charge ratios up to 6.3 from 3 keV/u to 300 keV/u at an operating frequency of 101.28 MHz with an electrode voltage of 60 kV. First RF-measurements have already been executed and can be compared to appropriate simulation results. Parts of the test stand are currently under construction, such as the volume ion source for He+ at an extraction voltage of 12 keV and an electrostatic quadruplet for injection with an integrated steering system. These tests and accompanying theoretical investigations will be done with special respect to the applicability of such normal conducting RFQ accelerators to the EURISOL post accelerator.