A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Assadi, S.

 
Paper Title Page
MOPCH127 SNS Warm Linac Commissioning Results 342
 
  • A.V. Aleksandrov, S. Assadi, W. Blokland, P. Chu, S.M. Cousineau, V.V. Danilov, C. Deibele, J. Galambos, S. Henderson, D.-O. Jeon, M.A. Plum, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee
 
  The Spallation Neutron Source accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of an H- injector, capable of producing one-ms-long pulses at 60Hz repetition rate with 38 mA peak current, a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The 2.5MeV beam from the Front End is accelerated to 86 MeV in the Drift Tube Linac, then to 185 MeV in a Coupled-Cavity Linac and finally to 1 GeV in the Superconducting Linac. The staged beam commissioning of the accelerator complex is proceeding as component installation progresses. Current results of the beam commissioning program of the warm linac will be presented including transverse emittance evolution along the linac, longitudinal bunch profile measurements at the beginning and end of the linac, and beam loss study.  
MOPCH129 Status of the SNS Beam Power Upgrade Project 345
 
  • S. Henderson, A.V. Aleksandrov, D.E. Anderson, S. Assadi, I.E. Campisi, F. Casagrande, M.S. Champion, R.I. Cutler, V.V. Danilov, G.W. Dodson, D.A. Everitt, J. Galambos, J.R. Haines, J.A. Holmes, N. Holtkamp, T. Hunter, D.-O. Jeon, S.-H. Kim, D.C. Lousteau, T.L. Mann, M.P. McCarthy, T. McManamy, G.R. Murdoch, M.A. Plum, B.R. Riemer, M.P. Stockli, D. Stout, R.F. Welton
    ORNL, Oak Ridge, Tennessee
 
  The baseline Spallation Neutron Source (SNS) accelerator complex, consisting of an H- injector, a 1 GeV linear accelerator, an accumulator ring and associated transport lines, will provide a 1 GeV, 1.44 MW proton beam to a liquid mercury target for neutron production. Upgrades to the SNS accelerator and target systems to increase the beam power to at least 2 MW, with a design goal of 3 MW, are in the planning stages. The increased SNS beam power can be achieved primarily by increasing the peak H- ion source current from 38 mA to 59 mA, installing additional superconducting cryomodules to increase the final linac beam energy to 1.3 GeV, and modifying injection and extraction hardware in the ring to handle the increased beam energy. The mercury target power handling capability will be increased to 2 MW or greater by i) mitigating cavitation damage to the target container through improved materials/surface treatments, and introducing a fine dispersion of gas bubbles in the mercury, and ii) upgrading the proton beam window, inner reflector plug and moderators. The upgrade beam parameters will be presented and the required hardware modifications will be described.  
MOPCH131 SNS Ring Commissioning Results 351
 
  • M.A. Plum, A.V. Aleksandrov, S. Assadi, W. Blokland, I.E. Campisi, P. Chu, S.M. Cousineau, V.V. Danilov, C. Deibele, G.W. Dodson, J. Galambos, M. Giannella, S. Henderson, J.A. Holmes, D.-O. Jeon, S.-H. Kim, C.D. Long, T.A. Pelaia, T.J. Shea, A.P. Shishlo, Y. Zhang
    ORNL, Oak Ridge, Tennessee
 
  The Spallation Neutron Source (SNS) comprises a 1.5-MW, 60-Hz, 1-GeV linac, an accumulator ring, associated beam lines, and a spallation neutron target. Construction began in 1999 and the project is on track to be completed in June 2006. By September 2005 the facility was commissioned up through the end of the superconducting linac, and in January 2006 commissioning began on the High Energy Beam Transport beam line, the accumulator ring, and the Ring to Target Beam Transport beam line up to the Extraction Beam Dump. In this paper we will discuss early results from ring commissioning including a comparison of achieved vs. design beam machine parameters and the maximum beam intensity achieved to date.  
TUOCFI02 First Results of SNS Laser Stripping Experiment 980
 
  • V.V. Danilov, A.V. Aleksandrov, S. Assadi, J. Barhen, Y. Braiman, D.L. Brown, W. Grice, S. Henderson, J.A. Holmes, Y. Liu, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee
 
  Thin carbon foils are used as strippers for charge exchange injection into high intensity proton rings. However, the stripping foils become radioactive and produce uncontrolled beam loss, which is one of the main factors limiting beam power in high intensity proton rings. Recently, we presented a scheme for laser stripping of an H- beam for the SNS ring. First, H- atoms are converted to H0 by a magnetic field, then H0 atoms are excited from the ground state to the upper levels by a laser, and the excited states are converted to protons by a magnetic field. This paper presents first results of the SNS laser stripping proof-of-principle experiment. The experimental setup is described, and possible explanations of the data are discussed.  
slides icon Transparencies
THPCH130 Design and Implementation of Analog Feedback Damper System for an Electron-proton Instability at the Los Alamos Proton Storage Ring 3104
 
  • C. Deibele, S. Assadi, V.V. Danilov, S. Henderson, M.A. Plum, C. Sibley III
    ORNL, Oak Ridge, Tennessee
  • S. Breitzmann, S.-Y. Lee
    IUCF, Bloomington, Indiana
  • J.M. Byrd
    LBNL, Berkeley, California
  • J.D. Gilpatrick, R.J. Macek, R.C. McCrady, J.F. Power, J. Zaugg
    LANL, Los Alamos, New Mexico
 
  The PSR (Proton Storage Ring) at LANSCE has observed an E-P (electron-proton) instability. A wideband analog feedback damper system was designed and implemented that has shown it is possible to correct this instability. The damper system consists of two 180 degree hybrids, low level amplifiers, a delay line, comb filter, power amplifiers, and adjustable delay lines. The system bandwidth is about between 10-300 MHz, and was developed and implemented in stages showing improvement in the e-p threshold of the buncher voltage. The system takes advantage of fiber optic technology for delays as well as for the comb filter. A system description and some measurement results are presented.  
THPCH156 SNS Transverse and Longitudinal Laser Profile Monitors Design, Implementation and Results 3161
 
  • S. Assadi
    ORNL, Oak Ridge, Tennessee
 
  SNS is using a Nd:YAG laser to measure transverse profiles at nine-stations in the 186-1000 MeV Super-Conducting LINAC (SCL) and a Ti:Sapphire mode-locked laser to measure longitudinal profiles in the 2.5 MeV Medium Energy Beam Transport (MEBT). The laser beam is scanned across the H- beam to photo-neutralize narrow slices. The liberated electrons are directly collected to measure the transverse or longitudinal beam profiles. We have successfully measured the transverse and longitudinal profiles at all stations. The SCL laser system uses an optical transport line that is installed alongside the 300 meter super-conducting LINAC to deliver laser light at nine locations. Movement of the laser light in the optical transport system can lead to problems with the profile measurement. We are using telescopes to minimize the oscillations and active feedback system on mirrors to correct the drifts and movements. In this paper we present our implementation and beam profiles measured during SCL commissioning. We also discuss future improvements, drift/vibration cancellation system, as well as plan to automate subsystems for both the transverse and the longitudinal profiles.