A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Arduini, G.

Paper Title Page
TUPLS130 Comparison between Measured and Simulated Beam Loss Patterns in the CERN SPS 1810
 
  • S. Redaelli, G. Arduini, R.W. Assmann, G. Robert-Demolaize
    CERN, Geneva
 
  A prototype of an LHC collimator has been tested with proton beams at the CERN SPS. The interaction of the circulating proton beam with the carbon collimator jaws generated showers that were lost in the downstream SPS aperture. The measured beam loss patterns are compared in detail with the results of dedicated loss simulations. The simulation package includes (1) a 6D particle tracking through the SPS lattice; (2) the scattering interaction of protons with the collimator jaw material; (3) the time-dependent displacement of the collimator jaws with respect to the beam orbit; (4) a detailed aperture model of the full SPS ring. It is shown that the simulation tools can reliably predict the measured location of losses. This provides an important assessment of the simulation tools in view of the LHC beam loss studies.  
THPCH057 The Fast Vertical Single-bunch Instability after Injection into the CERN Super Proton Synchrotron 2913
 
  • E. Métral, G. Arduini, T. Bohl, H. Burkhardt, G. Rumolo
    CERN, Geneva
  • B. Spataro
    INFN/LNF, Frascati (Roma)
 
  Since 2003, high-intensity single-bunch proton beams with low longitudinal emittance have been affected by heavy losses after less than one synchrotron period after injection. The effects of the resonance frequency of the responsible impedance, longitudinal emittance and chromaticity on the intensity threshold were already discussed in detail in 2004, comparing analytical predictions with simulation results. In this paper the evolution of the instability between injection and the time of beam loss is our main concern. Measurements are compared with HEADTAIL simulations. A travelling-wave pattern propagating along the bunch, which is the signature of a Beam Break-Up or Transverse Mode Coupling Instability (TMCI), is clearly identified. The oscillating frequency, near ~1 GHz, is in good agreement with the usual broad-band impedance model deduced from beam-based measurements like the head-tail growth rate vs. chromaticity.  
THPCH061 Tune Shift Induced by Nonlinear Resistive Wall Wake Field of Flat Collimator 2925
 
  • F. Zimmermann, G. Arduini, R.W. Assmann, H. Burkhardt, F. Caspers, M. Gasior, O.R. Jones, T. Kroyer, E. Métral, S. Redaelli, G. Robert-Demolaize, F. Roncarolo, G. Rumolo, R.J. Steinhagen, J. Wenninger
    CERN, Geneva
 
  We present formulae for the coherent and incoherent tune shifts due to the nonlinear resistive wall wake field for a single beam traveling between two parallel plates. In particular, we demonstrate that the nonlinear terms of the resistive wall wake field become important if the gap between the plates is comparable to the transverse rms beam size. We also compare the theoretically predicted tune shift as a function of gap size with measurements for an LHC prototype graphite collimator in the CERN SPS and with simulations.