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Abstract

We present formulae for the coherent and incoherent
tune shifts due to the nonlinear resistive wall wake field
for a single beam traveling between two parallel plates. In
particular, we demonstrate that the nonlinear terms of the
resistive-wall wake field become important if the gap be-
tween the plates is comparable to the transverse rms beam
size. We also compare the theoretically predicted tune shift
as a function of gap size with measurements for an LHC
prototype graphite collimator in the CERN SPS and with
simulations.

INTRODUCTION
A common procedure for measuring collimator

impedances is to detect the coherent betatron tune shift as a
function of collimator-gap size. If the collimator and bunch
are long, the impedance is dominated by the resistive-wall
effect of the collimator jaw. However, comparing the
measurement with the classical resistive-wall theory, such
as described in [1], does not necessarily give the correct
answer, especially if the jaw conductivity is low and/or the
beam size comparable to the gap size.

In this paper, we present a generalized formula, which
takes into account both the slow diffusion of the electro-
magnetic field through the collimator jaw, and the nonlin-
ear components of the resistive-wall wake field. The former
modifies the low-frequency impedance, while the latter in-
troduces a dependence of the tune shift on the transverse
emittance.

We benchmark our generalized theory against beam
measurements with an LHC prototype collimator per-
formed at the CERN SPS in 2004 [2].

Throughout this paper we consider Gaussian longitudi-
nal and transverse beam distributions. In the vertical plane
the distribution is truncated at the collimator aperture.

COHERENT TUNE SHIFT
Classical Theory

The classical theory of the thick-wall resistive
impedance [1] is valid for a wall thickness d much
larger than the skin depth δ, d � δ, and for
χc/b � |ω| � c/(bχ1/3) with χ ≡ 1

Z0σb , b the
chamber radius, c the speed of light, Z0 ≈ 377 Ω the
vacuum impedance, and σ the wall conductivity. Typically,
χ is small. For example, we find χ ∼ 2 × 10−5 for carbon
of σ ≈ 105 Ω−1 m−1 with half gap b ≈ 1.5 mm, and the

approximation is good over a large frequency range, from
about 1 MHz to 1 THz.

Introducing λ0(ω) = (i + sgn(ω))
√

μ0σ|ω|/2 the clas-
sical impedance is

Zclass(ω) = − i

b3

4πλ0(ω)
Z0σc

c

ω
, (1)

and, for a flat chamber with half height b, the classical co-
herent tune shift becomes

ΔQflat
class ≈

β

4π

NbrpL

2πγ

∫ ∞

−∞

π2

8
Zclass(ω) e−ω2σ2

z/c2
dω ,

(2)
where Nb denotes the bunch population, rp the classical
proton radius, γ the Lorentz factor, and L the length of
the collimator. The factor (π2/8) describes the difference
between a flat and a round chamber [3].

Burov-Lebedev Theory
The resistive-wall impedance derived by Burov and

Lebedev [4, 5] includes the effect of the finite chamber
thickness as well as the correct low-frequency behaviour.
It assumes c/ω � b and also βγ � 1 (relativistic limit;
for an estimate of non-relativistic corrections see [6]). In
the Burov-Lebedev theory for a vertically flat chamber of
thickness d with inner radius b and outer radius a = (b+d),
surrounded by vacuum, the impedance can be approxi-
mated, with an accuracy better than 13%, by [4]

Zflat
BL,y ≈ −i

π2

12
Z0

2πb2

1
1 + τ/2

, (3)

where τ ≡ κb tanh(κd), κ ≡
√
−4πiσμω/c2, and |κ|b �

1 is assumed.
Including the incoherent contribution for a flat chamber

via a multiplicative factor 3/2 [7], the corresponding co-
herent tune shift follows from

ΔQflat
BL,y ≈

β

4π

NbrpL

2πγ

∫ ∞

−∞

3
2

Zflat
BL,y(ω) e−ω2σ2

z/c2
dω .

(4)

General Nonlinear Theory
The nonlinear wake potential, up to infinite order in

the transverse positions of both drive and probe parti-
cles, for the resistive-wall wake of a Gaussian bunch pass-
ing between two parallel plates was derived by Piwinski
[8] and re-written by Bane, Irwin and Raubenheimer [9].
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In the Piwinski calculation, the time dependence and the
dependence on the transverse coordinates factorize. We
can therefore replace the time- (or frequency-) dependent
part with the more precise expression of Burov-Lebedev,
while keeping Piwinski’s nonlinear transverse dependence,
which represents a purely geometric effect.

In the Piwinski formalism, the vertical deflection Δy ′ of
single particle is obtained by the negative derivative of the
potential with respect to the y coordinate of the probe parti-
cle. Now considering a coherent oscillation, where the cen-
ter of both drive and test-particle distribution is displaced
by a small offset yc, the centroid deflection due to this off-
set, related to the coherent tune shift, is obtained by dif-
ferentiating Δy′ with respect to yc, then setting yc to zero,
and finally integrating over the horizontal and vertical dis-
tributions of test and source particles. Two of the four in-
tegrations can be performed analytically after a change of
variables; a double integral is left for numerical evaluation.
Executing the sketched procedure [10], we obtain the gen-
eral result

ΔQflat
nl,y ≈

β

4π

NbrpL

2πγ
fnl

∫ ∞

−∞

3
2

Zflat
BL,y(ω) e−ω2σ2

z/c2
dω .

(5)
This looks similar to (4), but the complexity is hidden in
the factor fnl(b, σx, σy), which is defined as

fnl ≡
(

2b2

π2

) erf
(

b
σy

)

(
erf

(
b√
2σy

))2 (6)

∫ ∞

−∞

∫ 2π

−2π

G(X, Y )
e
− Y 2b2

4π2σ2
y
− X2b2

4π2σ2
x

4πσxσy
dY dX ,

where the error functions arise due to the distribution cut
off at an amplitude equal to the half gap, and the function
G(X, Y ) is

G(X, Y ) = −1
8

(
cos

(
Y

2

)
+ cosh

(
X

2

))−3

(7)

[{
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2

)
− 8 cos

(
Y

2
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2

)2

−{4 cosY + 12 + Y sin Y } cosh
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X

2

)

−4Y sin
(

Y

2

)
− 8 cos

(
Y

2

)

−X (cosY − 3) sinh
(

X

2

)
+ X cos

(
Y

2

)
sinh X

]
.

INCOHERENT TUNE SHIFT
Since the deflection depends on the transverse and lon-

gitudinal coordinate of the test particle, the collimator in-
duces also an incoherent tune shift. From Piwinski’s clas-
sical nonlinear wake potential, we can derive the following

expression for the single-particle tune [10]

ΔQy,inc(x, y, τ) = − 1
(
erf

(
b√
2σy

))2

β

4π
κfR(τ)

∫ ∞

−∞

∫ b

−b

G̃(x, y, x0, y0)
e
−

y2
0

2σ2
y
−

x2
0

2σ2
x

(2π)σxσy
dy0 dx0 , (8)

where κ ≡ (1/2)Nbrp/(γσz)(L/b)
√

λσz , fR(τ) =√
2

π

∫∞
0

dτ ′/
√

τ ′e−(τ+τ ′)2/2, and

G̃(x, y, x0, y0) =
π2

4b2

[
−2 sin y− (y− cos y− + sin y−)

(cos y− − cosh x−)2

+
−2 cos y− + y− sin y−
(cos y− − cosh x−)

+
2 sin y+ (y+ cos y+ + sin y+)

(cos y+ + cosh x−)2

+
2 cos y+ − y+ sin y+

(cos y+ + cosh x−)
− cos y− (y− sin y− + x− sinh x−)

(cos y− − cosh x−)2

−2 sin2 y− (y− sin y− + x− sinhx−)

(cos y− − cosh x−)2

+
cos y+ (y+ sin y+ − x− sinh x−)

(cos y+ + cosh x−)2

+
2 sin2 y+ (y+ sin y+ − x− sinh x−)

(cos y+ + cosh x−)2

]
,

with y+ ≡ π/(2b)(y + y0), y− ≡ π/(2b)(y − y0), and
x− ≡ π/(2b)(x − x0). Strictly speaking, we should also
here replace the classical time dependence of the wake for
a Gaussian bunch, incorporated in fR(τ), by the equivalent
function corresponding to the Burov-Lebedev theory, as we
have done when computing the coherent tune shift. This
would give a few percent correction (though no precision
data are available) and lead to more tedious expressions,
but it would not affect the transverse dependence which is
at the origin of the large tune spread for small gaps.

EXAMPLES
We first consider the parameters in Table 1, which are

close to those of the SPS experiment (except that vertical
and horizontal planes are exchanged). Figure 1 illustrates
the dependence of the coherent tune shift on the transverse
emittance. Figure 2 shows the incoherent tune spread com-
puted from (8) for collimator half gaps b of 1.5 and 1 mm.
The actual experiment in the SPS exhibited some indirect
evidence for a change in the tune spread. Namely, the nat-
ural oscillation amplitude was reduced when the collimator
was closed [2, 11, 12], which could be explained by the
enhanced Landau damping due to the larger tune spread.

In Fig. 3, the coherent tune shift observed in the SPS
experiment is compared with the predictions from Eqs. (2),
(4) and (5). The latter were calculated using the actual opti-
cal functions at the collimator, and, for each data point, the
measured bunch intensity, bunch length, and emittances,
including error propagation [10]. The nonlinear formula
(5) agrees well with the experimental data, while the other
two expressions, (4) and (2), deviate by factors 2 or 2.5,
respectively, at the smallest gaps.
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Table 1: Example parameters.

bunch population Nb 1011

hor. beta function βx 93 m
vert. beta function βy 25 m
dispersion function Dy 0 cm
norm. transv. emittance γεx,y 1.5 μm
rms hor. beam size σx 0.72 mm
rms vert. beam size σy 0.37 mm
rms bunch length σz 0.21 m
circumference C 6912 m
vertical tune Qy 26.135
beam momentum p 270 GeV/c
collimator half gap b 1.5 mm
collimator thickness d 30 mm
collimator resistivity ρ 10 μΩm
collimator length L 1 m
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Figure 1: Coherent tune shift computed from the general
nonlinear formula (5) as a function of the two transverse
normalized emittances, for βx = 93 m, βy = 25 m,
γ ≈ 288, and a vertical half gap b = 1.5 mm. The lin-
ear estimate based on the flat-wall Burov-Lebedev formula,
(4), and the one from the classical theory, (2), are also in-
dicated. As can be seen, the latter two theories are strictly
applicable only in the limit of vanishing emittance, where
the nonlinear contributions disappear.

SUMMARY AND CAVEAT
We have described a new formula for the coherent be-

tatron tune shift of a Gaussian bunch induced by a flat-
chamber resistive wall impedance, including the nonlinear
components of the wake field. The latter give rise to a de-
pendence of the tune on the two transverse emittances and,
in particular, to a significant tune-shift reduction for beam
sizes comparable to the collimator gap. A similar expres-
sion was derived for the incoherent tune spread created by
the nonlinear collimator wake. The two formulae for co-
herent and incoherent tune shift, respectively, may explain
experimental observations with an LHC prototype collima-
tor at the SPS from 2004.

Our treatment is not fully self-consistent, as we impose
the shape of the vertical distribution to be a truncated Gaus-
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Figure 2: Vertical incoherent tune distribution calculated
by a Monte-Carlo evaluation of (8), assuming a Gaus-
sian beam distribution in all three dimensions with σx =
0.72 mm, σy = 0.37 mm, στ = 1, and considering a half
gap of b = 1.0 mm (left) and 1.5 mm (right). The area
of each histogram is normalized to 1. Note the different
horizontal scale.
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Figure 3: Measured data points from the SPS experiment
[red rhombi] compared with predictions from classical the-
ory (2) [light green upward triangles], Burov-Lebedev the-
ory (4) [purple downward triangles] and general nonlinear
theory (5) [blue sideward triangles]. The error bar on the
predicted values contains both the statistical and the sys-
tematic error.

sian, which it might be on a first passage, but unlikely on
later turns. The Gaussian approximation appears accept-
able as long as the collimator gaps are large enough that
only a small portion of the beam is scraped.
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