A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Angal-Kalinin, D.A.-K.

Paper Title Page
MOPLS060 Design of an Interaction Region with Head-on Collisions for the ILC 682
 
  • J. Payet, O. Napoly, C. Rippon, D. Uriot
    CEA, Gif-sur-Yvette
  • M. Alabau Pons, P. Bambade, J. Brossard, O. Dadoun, C. Rimbault
    LAL, Orsay
  • D.A.-K. Angal-Kalinin, F. Jackson
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Appleby
    UMAN, Manchester
  • L. Keller, Y. Nosochkov, A. Seryi
    SLAC, Menlo Park, California
 
  An interaction region with head-on collisions is considered an alternative to the baseline configuration of the International Linear Collider, including two interaction regions with finite crossing-angles (2 and 20 mrad). Although more challenging from the point of view of the beam extraction, the head-on scheme is favoured by the experiments because it allows a more convenient detector configuration, particularly in the forward region. The optics of the head-on extraction is revisited by separating the e+ and e- beams horizontally, first by electrostatic separators operated at their LEP nominal field and then using a defocusing quadrupole of the final focus beam line. In this way the septum magnet is protected from the beamstrahlung power. Newly optimized final focus and extraction optics are presented, including a first look at post-collision diagnostics. The influence of parasitic collisions is shown to lead to a region of stable collision parameters. Beam and beamstrahlung photon losses are calculated along the extraction elements. Issues concerning the design of the large bore superconducting final focus magnets, common to both incoming and outgoing beams, are considered.  
MOPLS066 Direct Measurement of Geometric and Resistive Wakefields in Tapered Collimators for the International Linear Collider 697
 
  • N.K. Watson, D. Adey, M.C. Stockton
    Birmingham University, Birmingham
  • D.A.-K. Angal-Kalinin, C.D. Beard, J.L. Fernandez-Hernando, F. Jackson
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Arnold, R.A. Erickson, C. Hast, T.W. Markiewicz, S. Molloy, M.C. Ross, S. Seletskiy, A. Seryi, Z. Szalata, P. Tenenbaum, M. Woodley, M. Woods
    SLAC, Menlo Park, California
  • R.J. Barlow, A. Bungau, R.M. Jones, G.Yu. Kourevlev, A. Mercer
    UMAN, Manchester
  • D.A. Burton, J.D.A. Smith, A. Sopczak, R. Tucker
    Lancaster University, Lancaster
  • C. Densham, G. Ellwood, R.J.S. Greenhalgh, J. O'Dell
    CCLRC/RAL, Chilton, Didcot, Oxon
  • Y.K. Kolomensky
    UCB, Berkeley, California
  • M. Kärkkäinen, W.F.O. Müller, T. Weiland
    TEMF, Darmstadt
  • N. Shales
    Microwave Research Group, Lancaster University, Lancaster
  • M. Slater
    University of Cambridge, Cambridge
  • I. Zagorodnov
    DESY, Hamburg
  • F. Zimmermann
    CERN, Geneva
 
  Precise collimation of the beam halo is required in the ILC to prevent beam losses near the interaction region that could cause unacceptable backgrounds for the physics detector. The necessarily small apertures of the collimators lead to transverse wakefields that may result in beam deflections and increased emittance. A set of collimator wakefield measurements has previously been performed in the ASSET region of the SLAC LINAC. We report on the next phase of this programme, which is carried out at the recently commissioned End Station A test facility at SLAC. Measurements of resistive and geometric wakefields using tapered collimators are compared with model predictions from MAFIA and GdfidL and with analytic calculations.  
MOPLS067 Test Beam Studies at SLAC's End Station A, for the International Linear Collider 700
 
  • M. Woods, C. Adolphsen, R. Arnold, G.B. Bowden, G.R. Bower, R.A. Erickson, H. Fieguth, J.C. Frisch, C. Hast, R.H. Iverson, Z. Li, T.W. Markiewicz, D.J. McCormick, S. Molloy, J. Nelson, M.T.F. Pivi, M.C. Ross, S. Seletskiy, A. Seryi, S. Smith, Z. Szalata, P. Tenenbaum
    SLAC, Menlo Park, California
  • D. Adey, M.C. Stockton, N.K. Watson
    Birmingham University, Birmingham
  • M. Albrecht, M.H. Hildreth
    Notre Dame University, Notre Dame, Iowa
  • W.W.M. Allison, V. Blackmore, P. Burrows, G.B. Christian, C.C. Clarke, G. Doucas, A.F. Hartin, B. Ottewell, C. Perry, C. Swinson, G.R. White
    OXFORDphysics, Oxford, Oxon
  • D.A.-K. Angal-Kalinin, C.D. Beard, J.L. Fernandez-Hernando, F. Jackson, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R.J. Barlow, A. Bungau, G.Yu. Kourevlev, A. Mercer
    UMAN, Manchester
  • S.T. Boogert
    Royal Holloway, University of London, Surrey
  • D.A. Burton, J.D.A. Smith, R. Tucker
    Lancaster University, Lancaster
  • W.E. Chickering, C.T. Hlaing, O.N. Khainovski, Y.K. Kolomensky, T. Orimoto
    UCB, Berkeley, California
  • C. Densham, R.J.S. Greenhalgh
    CCLRC/DL, Daresbury, Warrington, Cheshire
  • V. Duginov, S.A. Kostromin, N.A. Morozov
    JINR, Dubna, Moscow Region
  • G. Ellwood, P.G. Huggard, J. O'Dell
    CCLRC/RAL, Chilton, Didcot, Oxon
  • F. Gournaris, A. Lyapin, B. Maiheu, S. Malton, D.J. Miller, M.W. Wing
    UCL, London
  • M.B. Johnston
    University of Oxford, Clarendon Laboratory, Oxford
  • M.F. Kimmitt
    University of Essex, Physics Centre, Colchester
  • H.J. Schriber, M. Viti
    DESY Zeuthen, Zeuthen
  • N. Shales, A. Sopczak
    Microwave Research Group, Lancaster University, Lancaster
  • N. Sinev, E.T. Torrence
    University of Oregon, Eugene, Oregon
  • M. Slater, M.T. Thomson, D.R. Ward
    University of Cambridge, Cambridge
  • Y. Sugimoto
    KEK, Ibaraki
  • S. Walston
    LLNL, Livermore, California
  • T. Weiland
    TEMF, Darmstadt
  • M. Wendt
    Fermilab, Batavia, Illinois
  • I. Zagorodnov
    DESY, Hamburg
  • F. Zimmermann
    CERN, Geneva
 
  The SLAC Linac can deliver to End Station A a high-energy test beam with similar beam parameters as for the International Linear Collider for bunch charge, bunch length and bunch energy spread. ESA beam tests run parasitically with PEP-II with single damped bunches at 10Hz, beam energy of 28.5 GeV and bunch charge of (1.5-2.0)·1010 electrons. A 5-day commissioning run was performed in January 2006, followed by a 2-week run in April. We describe the beamline configuration and beam setup for these runs, and give an overview of the tests being carried out. These tests include studies of collimator wakefields, prototype energy spectrometers, prototype beam position monitors for the ILC Linac, and characterization of beam-induced electro-magnetic interference along the ESA beamline.  
MOPLS077 The 2mrad Crossing Angle Interaction Region and Extraction Line 730
 
  • R. Appleby
    UMAN, Manchester
  • D.A.-K. Angal-Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade, O. Dadoun
    LAL, Orsay
  • J. Carter
    Royal Holloway, University of London, Surrey
  • L. Keller, K. C. Moffeit, Y. Nosochkov, A. Seryi, C.M. Spencer
    SLAC, Menlo Park, California
  • O. Napoly
    CEA, Gif-sur-Yvette
  • B. Parker
    BNL, Upton, Long Island, New York
 
  A complete optics design for the 2mrad crossing angle interaction region and extraction line was presented at Snowmass 2005. Since this time, the design task force has been working on developing and improving the performance of the extraction line. The work has focused on optimising the final doublet parameters and on reducing the power losses resulting from the disrupted beam transport. In this paper, the most recent status of the 2mrad layout and the corresponding performance are presented.  
TUPCH048 A Study of Emittance Measurement at the ILC 1115
 
  • G.A. Blair, I.V. Agapov, J. Carter, L. Deacon
    Royal Holloway, University of London, Surrey
  • D.A.-K. Angal-Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • L.J. Jenner
    Cockcroft Institute, Warrington, Cheshire
  • M.C. Ross, A. Seryi, M. Woodley
    SLAC, Menlo Park, California
 
  The measurement of the ILC emittance in the ILC beam delivery system and the linac is simulated. Estimates of statistical and machine-related errors are discussed and implications for related diagnostics R&D are inferred.