A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Alfeev, A.V.

Paper Title Page
MOPCH089 Basic Aspects of the SIS100 Correction System Design 240
 
  • V.A. Mikhaylov, A.V. Alfeev, A.V. Butenko, A.V. Eliseev, H.G. Khodzhibagiyan, A.D. Kovalenko, O.S. Kozlov, V.V. Seleznev, A.Y. Starikov, V. Volkov
    JINR, Dubna, Moscow Region
  • E. Fischer, P.J. Spiller, J. Stadlmann
    GSI, Darmstadt
 
  The basic concept and the main design features of the superconducting SIS100 correction system are presented. The system comprises 84 steerer magnets consisting of two orthogonal dipole windings each for correction of the beam close orbit in vertical and horizontal planes, 48 normal sextupole windings connected in two families with opposite polarities for chromaticity correction and 12 units containing skew quadrupoles, normal and skew sextupoles and octupoles as well. The correction system should operate in a pulse mode corresponding to the accelerator cycle, i.e., up to 1 Hz. The main magnetic, geometrical and electrical parameters of the corrector magnets were specified. They are based on the beam dynamic analysis within the frames of the DF-type SIS100 lattice at different betatron tune numbers and tolerable alignment and manufacturing errors of the main lattice dipole and quadrupole magnets. The problem of reasonable unification of the corrector modules is discussed also, including their geometrical sizes, maximum supply current and cooling at 4.5 K. The concept of the SIS100 corrector magnets is based on the pulsed correctors designed for the Nuclotron.  
WEPLS090 Full Length Superferric Dipole and Quadrupole Prototype Magnets for the SIS100 at GSI: Status of the Design and Manufacturing 2583
 
  • A.D. Kovalenko, N.N. Agapov, A.V. Alfeev, H.G. Khodzhibagiyan, G.L. Kuznetsov, V.V. Seleznev, A.Y. Starikov
    JINR, Dubna, Moscow Region
  • E. Fischer, G. Moritz, C. Muehle, P.J. Spiller
    GSI, Darmstadt
  • A.K. Kalimov
    St. Petersburg State Polytechnic University, St. Petersburg
  • A.V. Shabunov
    JINR/LHE, Moscow
 
  The SIS100, one of the two basic accelerators of the future Facility for Antiproton and Ion Research FAIR at GSI, should provide acceleration of U28+ and proton beams for 0.5 s with a pulse repetition rate of 1 Hz. In the accelerator magnetic system superferric 2 T dipoles of about 3 m length and 35 T/m quadrupoles of about 1 m length will be used. The magnet coils are made from hollow NbTi composite cable cooled with two-phase helium flow at 4.5 K. The maximum operating current of 7500 A is supposed. The lattice comprises 108 dipoles and 168 quadrupoles. The elliptic beam pipe inner sizes have been fixed to 130x60 mm2 for the dipole and 135x65 mm2 for the quadrupole The design approach is based on the improved versions of the Nuclotron fast-cycling magnets that provide significant less AC loss at 4.5 K, better quality of the magnetic field and a higher long-term mechanical stability of the magnet coils. The AC losses in the magnets for the strongest SIS100 operating cycle at 4.5 K are expected to be about 13 W/m and 17 W/m in the full length prototype dipole and quadrupole magnets respectively.