Author: Zheng, X.
Paper Title Page
MOAO02 The Commissioning of a 230 MeV Superconducting Cyclotron CYCIAE-230 15
 
  • C. Wang, H.R. Cai, W.F. Fu, A.L. He, M.Z. Hu, B. Ji, L.Y. Ji, X.L. Jia, Y. Jia, T.Y. Jiang, J. Liu, J.Y. Liu, P. Liu, Z.W. Liu, X. Mu, S. Pei, G.F. Song, Q.Q. Song, F. Wang, J.Y. Wei, L.P. Wen, J.S. Xing, Z.G. Yin, D.Z. Zhang, S.P. Zhang, T.J. Zhang, X. Zheng, H. Zhou, P.F. Zhu, X.F. Zhu
    CIAE, Beijing, People’s Republic of China
 
  There are very strong demands for proton accelera-tors in medium energy range in recent years due to the fast growth of proton therapy and the space science in China. For the applications of proton therapy and pro-ton irradiation, the energy range of proton beam is usually from 200MeV to 250MeV, or even higher for astronavigation [1]. An R&D project for constructing a 230MeV superconducting cyclotron (CYCIAE-230) has been initiated at China Institute of Atomic Energy (CIAE) since Jan 2015. In July of 2016, after the fund-ing was approved by China National Nuclear Corpora-tion (CNNC), the construction project was fully launched. In Dec 2019, the superconducting main magnet and the RF system were transferred to the new-ly built commissioning site. Then, the RF commission-ing, ion source and central region test were performed even during the pandemic in early 2020. In September 2020, after finishing the commissioning tests of all subsystems, the beam was reached the extraction channel but with very low efficiency. Since then, with more efforts on beam diagnostics, the fine tuning of the beam phase and the adjusting of the superconduct-ing coil have been proven to be useful to get higher beam extraction efficiency ~55%. In this paper, the commissioning of the key components, including the main magnet, SC coils, internal ion source and central region, extraction system, etc, as well as the commis-sioning progress of the machine CYCIAE-230 will be presented.  
slides icon Slides MOAO02 [10.305 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-MOAO02  
About • Received ※ 24 January 2023 — Revised ※ 25 January 2023 — Accepted ※ 09 February 2023 — Issue date ※ 10 June 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO005 Impedance Characteristic Analysis and Matching Network Design for a 100 mA H Ion Source 58
 
  • A.X. Ding, H.R. Cai, X.L. Jia, P.Z. Li, Z.J. Nong, G.F. Pan, J.F. Wang, H. Zhang, T.J. Zhang, X. Zheng
    CIAE, Beijing, People’s Republic of China
 
  China Institute of Atomic Energy (CIAE) has developed a series of multi-cusp H ion sources (IS) with DC beam intensity ranging from 3 to 18 mA for high intensity proton cyclotron uses such as cyclotron PET application, neutron source and boron neutron capture therapy (BNCT) facilities. Based on the previous experiences, a new project of radio frequency (RF) antenna driving ion source has been launched for pulse accelerator research. This new ion source is expected to provide over 100 mA peak intensity H beams of 60 keV and a longer maintenance interval than conventional filament-driving ion sources above. Impedance matching is indispensable for efficient RF power coupling in the whole working process of the ion source for high-intensity H beam extraction. In this paper, impedance characteristic of the IS antenna with various plasma loading is analyzed. Eight typical matching topologies are discussed on their electrical requirements. A type-L and a type-γ network are finally selected for the 2 MHz and 13.56 MHz chains respectively. This design may provide a better compromise between the matching performance and the cost of implementation for a wide dynamic loading range. Design of the network is evaluated on the power delivering efficiency in each of the two RF chains and isolation between one and the other. The IS structure and near-future work plan are also presented.  
poster icon Poster MOPO005 [1.228 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-MOPO005  
About • Received ※ 24 December 2022 — Revised ※ 11 January 2023 — Accepted ※ 01 February 2023 — Issue date ※ 25 April 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)