Author: Sheehy, S.L.
Paper Title Page
WEA04
Update on OPAL  
 
  • A. Adelmann, A. Gsell, V. Rizzoglio
    PSI, Villigen PSI, Switzerland
  • Y. Ineichen
    IBM Research - Zurich, Rueschlikon, Switzerland
  • C.J. Metzger-Kraus
    HZB, Berlin, Germany
  • X. Pang, S.J. Russell
    LANL, Los Alamos, New Mexico, USA
  • C.T. Rogers, S.L. Sheehy
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • S.L. Sheehy
    JAI, Oxford, United Kingdom
  • C. Wang, J.J. Yang
    CIAE, Beijing, People's Republic of China
  • D. Winklehner
    MIT, Cambridge, Massachusetts, USA
 
  OPAL (Object Oriented Parallel Accelerator Library) is a open source tool for charged-particle optics calculations in accelerator structures and beam lines including 3D space charge, short range wake-fields, 1D coherent synchrotron radiation and particle matter interaction. OPAL admits simulations of any scale, from the laptop to the largest HPC clusters. OPAL has a fast FFT based direct solver and an iterative solver with AMR, able to handle efficiently exact boundary conditions on complex geometries. We will discuss new capabilities such as Graphical Processing Units (GPUs) support, turning your workstation into a super computer, time dependent fields necessary for modelling FFAGs, synchrotrons and synchro-cyclotrons and the creation of matched distributions with linear space charge.  
slides icon Slides WEA04 [5.597 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THD01 High Intensity and Other World Wide Developments in FFAG 374
 
  • S.L. Sheehy
    JAI, Oxford, United Kingdom
 
  Here I present an overview of developments in Fixed Field Alternating Gradient accelerators, focusing on high intensity hadron accelerator designs. The talk will detail progress in studies of space charge effects and simulation, experimental characterisation of a 150 MeV proton FFAG at KURRI in Japan, experimental optimisation of FFAGs and novel FFAG developments for future applications.  
slides icon Slides THD01 [12.473 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)