Author: D'Agostino, G.
Paper Title Page
MOA02 Upgrade of the LNS Superconducting Cyclotron for Beam Power Higher than 2-5 kW 7
 
  • L. Calabretta, A. Calanna, G. Cuttone, G. D'Agostino, D. Rifuggiato, A.D. Russo
    INFN/LNS, Catania, Italy
 
  The LNS Superconducting Cyclotron has been in operation for more than 20 years, delivering to users a considerable variety of ion species from H to Pb, with energy in the range 10 to 80 A MeV. Up to now the maximum beam power has been limited to 100 W due to the beam dissipation in the electrostatic deflectors. To fulfill the users request, aiming to study rare processes in Nuclear Physics, the beam power has been planned to be increased up to 2-10 kW for ions with mass lower than 40 a.m.u., to be extracted by stripping. This development will maintain the present performance of the machine, i.e. the existing extraction mode will be maintained for all the ion species allowed by the operating diagram. To achieve this goal, a significant refurbishing operation of the cyclotron is needed, including a new cryostat with new superconducting coils, a new extraction channel with a large vertical gap, additional penetrations to host new magnetic channels and new compensation bars. Moreover the vacuum in the acceleration chamber is planned to be improved by replacing the liners and the trim coils. A general description of the refurbishing project will be presented.  
slides icon Slides MOA02 [11.857 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC03 Extraction by Stripping in the IFNS-LNS Superconducting Cyclotron: Study of the Extraction Trajectories 160
 
  • G. D'Agostino, L. Calabretta, A. Calanna, D. Rifuggiato
    INFN/LNS, Catania, Italy
 
  The INFN-LNS Superconducting Cyclotron will be upgraded to allow for the extraction by stripping for ion beams with masses below 40 amu. By choosing properly the position of the stripper, it is possible to convoy the trajectories of the selected representative ion beams across a new extraction channel (E.C.). Here we report the design study for the new E.C. and the simulations of the beam envelopes for a set of ions to find out the parameters of the magnetic channels necessary to focus and to steer the beams through the new extraction line. Two new compensation bars have been designed to compensate the first harmonic contribution of the new magnetic channels. The results of these simulations will be also presented.  
slides icon Slides TUC03 [2.909 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)