Author: Panasyuk, V.M.
Paper Title Page
TUM11 Low Energy Electron Cooler for the NICA Booster 22
 
  • A.V. Bubley, M.I. Bryzgunov, V.A. Chekavinskiy, A.D. Goncharov, K. Gorchakov, I.A. Gusev, V.M. Panasyuk, V.V. Parkhomchuk, V.B. Reva, D.V. Senkov
    BINP SB RAS, Novosibirsk, Russia
  • A.V. Smirnov
    JINR, Dubna, Moscow Region, Russia
 
  The low energy electron cooler for the NICA booster has recently been installed at the booster ring of the NICA facility. The article describes results of various measurements obtained during its commissioning. Also some details of design and construction of the cooler are discussed.  
slides icon Slides TUM11 [3.933 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUM11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUM21 High Voltage Cooler NICA Status and Ideas 25
 
  • V.B. Reva, M.I. Bryzgunov, A.V. Bubley, A.D. Goncharov, N.S. Kremnev, V.M. Panasyuk, V.V. Parkhomchuk, V.A. Polukhin, A.A. Putmakov
    BINP SB RAS, Novosibirsk, Russia
 
  The new accelerator complex NICA is designed at the Joint Institute for Nuclear Research (JINR, Dubna, Russia) to do experiment with ion-ion and ion-proton collision in the range energy 1-4.5 GeV/u. The planned luminosity in these experiments is 1027cm-2c{-1}. This value can be obtained with help of very short bunches with small transverse size. This beam quality can be realized with electron and stochastic cooling at energy of the physics experiment. The subject of the report is the problem of the technical feasibility of fast electron cooling for collider in the energy range between 0.2 and 2.5 MeV. For the realization of the cooler device BINP team proposes the design that is like to COSY cooler. The main features of this design are the accelerating tube immersed in the magnetic field along the whole length and the strong magnetic field in the cooling section. The physics of electron cooling is based on the idea of the fast magnetized cooling when the ion interacts with Larmour circle and the cooling decrements are improved significantly. The cooling force at strong magnet field was measured at many experiments and can be surely estimated.  
slides icon Slides TUM21 [50.456 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUM21  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)