Author: Ma, X.M.
Paper Title Page
TUP13 Calculations of the Gun and Collector for Electron Cooling Systems of HIAF 54
 
  • M.T. Tang, J. Li, H.J. Lu, X.M. Ma, L.J. Mao, T.L. Yan, X.D. Yang, H. Zhao, L.X. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
  • A.V. Ivanov
    BINP SB RAS, Novosibirsk, Russia
 
  Two electron coolers are designed for the new project HIAF, one cooler with the highest energy 50keV is for the booster ring (BRing) to decreasing the transverse emittance of injected beams and another one with the highest energy 450keV is for the high precision Spec-trometer Ring (SRing). In this paper the results of the gun and collector simulation for these two electron coolers are presented. After optimization, the gun can produce 2A profile variable electron beam. The one time collecting efficiency is higher than 99.99%. The results of electron motions in toroid calculated by a numerical method are also summarized in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP13  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP14 Investigation on the Suppression of Intrabeam Scattering in the High Intensity Heavy Ion Beam with the help of Longitudinal Multi-bunch Chain of Electron 58
 
  • X.D. Yang, J. Li, X.M. Ma, L.J. Mao, M.T. Tang, T.L. Yan, H. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  Intrabeam scattering is the main reason of degradation of the beam brightness and shortening of brightness lifetime in the collider, light source and storage ring. The intrabeam scattering presents dissimilar influence in the different facilities. Electron cooling was chose to suppress the effect of intrabeam scattering, another unexpected effect happened during the cooling. The distribution of ion beam quickly deviates from the initial Gaussian type, form a denser core and long tail. The ions standing in the tail of beam will loss soon due to large amplitude. This solution will focus on the investigation on the suppression of intrabeam scattering in the high intensity heavy ion beam in the storage ring with the help of longitudinally modulated electron beam. The stronger cooling was expected in the tail of ion beam and the weaker cooling was performed in the tail of ion beam. The particle in the outside will experience stronger cooling and will be driven back into the centre of ion beam. The ion loss will be decreased and the lifetime will be increased. The intensity of ion beam in the storage ring will be kept and maintain for long time.  
poster icon Poster TUP14 [4.160 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP14  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP15 Experimental Demonstration of Electron Cooling with Bunched Electron Beam 61
 
  • L.J. Mao, J. Li, X.M. Ma, M.T. Tang, J.C. Yang, X.D. Yang, H. Zhao, H.W. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
  • A. Hutton, K. Jordan, T. Powers, R.A. Rimmer, M. Spata, H. Wang, S. Wang, H. Zhang, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the Hundred Talents Project of the Chinese Academy of Sciences and National Natural Science Foundation of China (Nos. 11575264, 11475235, 11375245)
Electron cooling at high energy is presently considered for several ion colliders, in order to achieve high luminosities by enabling a significant reduction of emittance of hadron beams. Electron beam at cooling channel in a few to tens MeV can be accelerated by a RF/SRF linac, and thus using bunched electrons to cool bunched ions. To study such cooling process, the DC electron gun of EC35 cooler was modified by pulsing the grid voltage, by which a 0.5-3.5 us of electron bunch length with a repetition frequency of less than 250 kHz was obtained. The first experiment demonstrated cooling coasting and bunched ion beam by a bunched electron beam was carried out at the storage ring CSRm at IMP. A preliminary data analysis has indicted the bunch length shrinkage and the momentum spread reduction of bunched 12C+6 ion beam. A longitudinal grouping effect of coasting ion beam by the electron bunch has also observed. In this paper, we will present the experiment result and its preliminary comparison to the simulation modeling.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP15  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)