Author: Witgen, K.
Paper Title Page
WEBA03 Production Status of SRF Cavities for the Facility for Rare Isotope Beams (FRIB) Project 961
 
  • C. Compton, A. Facco, S.J. Miller, J. Popielarski, L. Popielarski, A.P. Rauch, K. Saito, G.J. Velianoff, E.M. Wellman, K. Witgen, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  As the Facility for Rare Isotope Beams (FRIB) project ramps into production, vendor relations, cavity quality, and schedule become critical to success. The driver linac will be constructed of 332 cavities housed in 48 cryomodules and designed with two cavity classes (quarter-wave and half-wave) and four different betas (0.041, 0.085, 0.29, and 0.53). The cavities will be supplied to FRIB from awarded industrial vendors. FRIB’s experience with SRF cavity fabrication will be presented including acceptance inspections, test results, technical issues, and mitigation strategies.  
slides icon Slides WEBA03 [1.672 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
FRAA06 Construction and Performance of FRIB Quarter Wave Prototype Cryomodule 1446
 
  • S.J. Miller, B. Bird, G.D. Bryant, B. Bullock, N.K. Bultman, F. Casagrande, C. Compton, A. Facco, P.E. Gibson, J.D. Hulbert, D. Morris, J. Popielarski, L. Popielarski, M.A. Reaume, R.J. Rose, K. Saito, M. Shuptar, J.T. Simon, B.P. Tousignant, J. Wei, K. Witgen, T. Xu
    FRIB, East Lansing, Michigan, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The driver linac for the Facility for Rare Isotope Beams (FRIB) will require the production of 48 cryomodules. FRIB has completed the fabrication and testing of a β=0.085 quarter-wave cryomodule as a pre-production prototype. This cryomodule qualified the performance of the resonators, fundamental power couplers, tuners, and cryogenic systems of the β=0.085 quarter-wave design. In addition to the successful systems qualification; the ReA6 cryomodule build also verified the FRIB bottom up assembly and alignment method. The lessons learned from the ReA6 cryomodule build, as well as valuable fabrication, sourcing, and assembly experience are applied to the design and fabrication of FRIB production cryomodules. This paper will report the results of the β=0.085 quarter-wave cryomodule testing, fabrication, and assembly; production implications to future cryomodules will also be presented. Authors:
 
slides icon Slides FRAA06 [10.892 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)