Paper | Title | Page |
---|---|---|
THPB026 | Update on SRF Cavity Design, Production and Testing for BERLinPro | 1127 |
|
||
Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association. The BERLinPro Energy Recovery Linac (ERL) is currently being built at Helmholtz-Zentrum Berlin in order to study the accelerator physics of operating a high current, 100 mA, 50 MeV low emittance ERL utilizing all SRF cavity technology. For this machine three different types of SRF cavities are being developed. For the injector section, consisting of an SRF photoinjector and a three two cell booster cavity module, fabrication is completed. The cavities were designed at HZB and manufactured, processed and vertically tested at Jefferson Laboratory. In this paper we will review the design and production process of the two structures and show the latest horizontal acceptance tests at HZB prior to installation into the newly designed cryo-module. For the Linac cavity the latest cavity and module design studies are being shown. |
||
![]() |
Poster THPB026 [1.535 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB055 | RF Performance Results of the 2nd ELBE SRF Gun | 1227 |
|
||
As in 2007 the first 3.5 cell superconducting radio frequency (SRF) gun was taken into operation at Helmholtz-Zentrum Dresden-Rossendorf, it turned out that the specified performance to realize an electron energy of 9.4 MeV has not been achieved. Instead, the resonator of the gun was limited by field emission to about one third of this value and the measured beam parameters remained significantly below its expectations. However, to demonstrate the full potential of this electron source for the ELBE linear accelerator, a second and slightly modified SRF gun was developed and built in collaboration with Thomas Jefferson National Accelerator Facility. We will report on commissioning of this new SRF gun and present a full set of RF performance results. Additionally, investigations are shown that try to explain a particle contamination that happened recently during our first cathode transfer. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |