Paper | Title | Page |
---|---|---|
MOBA08 | Niobium Impurity-Doping Studies at Cornell and CM Cool-Down Dynamic Effect on Q0 | 55 |
|
||
As part of a multi-laboratory research initiative on high Q0 niobium cavities for LCLS-II and other future CW SRF accelerators, Cornell has conducted an extensive research program during the last two years on impurity-doping of niobium cavities and related material characterization. Here we give an overview of these activities, and present results from single-cell studies, from vertical performance testing of nitrogen-doped nine-cell cavities, and from cryomodule testing of nitrogen-doped nine-cell cavities. | ||
![]() |
Slides MOBA08 [8.983 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB033 | LCLS-II SRF Cavity Processing Protocol Development and Baseline Cavity Performance Demonstration | 159 |
|
||
Funding: Work supported, in part, by the US DOE and the LCLS-II Project under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-76SF00515. The ”Linac Coherent Light Source-II” Project will construct a 4 GeV CW superconducting RF linac in the first kilometer of the existing SLAC linac tunnel. The baseline design calls for 280 1.3 GHz nine-cell cavities with an average intrinsic quality factor Q0 of 2.7·1010 at 2K and 16 MV/m accelerating gradient. The LCLS-II high Q0 cavity treatment protocol utilizes the reduction in BCS surface resistance by nitrogen doping of the RF surface layer, which was discovered originally at FNAL. Cornell University, FNAL, and TJNAF conducted a joint high Q0 R&D program with the goal of (a) exploring the robustness of the N-doping technique and establishing the LCLS-II cavity high Q0 processing protocol suitable for production use, and (b) demonstrating that this process can reliably achieve LCLS-II cavity specification in a production acceptance testing setting. In this paper we describe the LCLS-II cavity protocol and analyze combined cavity performance data from both vertical and horizontal testing at the three partner labs, which clearly shows that LCLS-II specifications were met, and thus demonstrates readiness for LCLS-II cavity production. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB084 | Performance of Nitrogen-Doped 9-Cell SRF Cavities in Vertical Tests at Cornell University | 328 |
|
||
Cornell University treated five LCLS-II 9-cell cavities by nitrogen-doping recipe. In this paper, we reported the performance of these 9-cell cavities. In the treatments, the nitrogen recipes are slightly different. The cavities have been firstly doped under high nitrogen pressure; after the vertical tests some of the cavities has been reset the surface and re-doped under light nitrogen pressure. The detail of the cavity preparation and test results will be shown. The comparison of the different recipes will be discussed. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB085 | Efforts of the Improvement of Cavity Q-Value by Plasma Cleaning Technology: Plan and Results From Cornell University | 333 |
|
||
We reported the plasma works at Cornell University. The plasma has been generated for 1) surface cleaning to reduce field emission; 2) the cavity quality factor improvement. The experiment design, including RF design, the gas type and pressure selection, the external DC magnetic field calculation, had been discussed. The plasma experiment set-up by using a 1.3GHz single-cell cavity is shown. Argon and helium plasma was successfully ignited in the cavity; the results of the plasma processing will be displayed. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB093 | Vertical Electropolishing Studies at Cornell | 364 |
|
||
Vertical Electro-Polishing (VEP) has been developed and applied on various SRF R&Ds at Cornell as primary surface process of Nb. Recent achievements had been demonstrated with nitrogen doped high-Q cavities for LCLS-II. Five 9-cell cavities processed with VEP and nitrogen doping at Cornell showed the high average Qo value of 3.0·1010 at 16MV/m, 2K, during vertical test. this achievement satisfied the required cavity specification values of LCLS-II(2.7·1010 at 16MV/m, 2K). We will report the details of these achievements and new VEP collaboration projects between Cornell and companies. | ||
![]() |
Poster MOPB093 [4.364 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THBA05 | Higher Order Mode Absorbers for High Current SRF Applications | 1036 |
|
||
Efficient damping of the higher-order modes (HOMs) of the superconducting cavities is essential for any high current operation. The talk will provide an overview on the latest advances of HOM absorber development for high intensity SRF applications. As the ideal absorber does not exist, the different conceptual approaches will be presented and the associated issues are outlined. Design examples from various labs will be given that help explain the issues and resolutions. Some focus will be given to the Cornell HOM beamline absorber that was design for high current, short bunch operation with up to 400 W heating. The design will be reviewed and testing results will be reported. | ||
![]() |
Slides THBA05 [4.022 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRAA04 | Performance of the Cornell ERL Main Linac Prototype Cryomodule | 1437 |
|
||
Cornell has designed, fabricated, and tested (by the time of the conference) a high current (100 mA) CW SRF prototype cryomodule for the Cornell ERL. This talk will report on the design and performance of this very high Q0 CW cryomodule including design issues and mitigation strategies. | ||
![]() |
Slides FRAA04 [4.614 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |