Author: Reschke, D.
Paper Title Page
MOAA02 Recent Progress with EU-XFEL 14
 
  • D. Reschke
    DESY, Hamburg, Germany
 
  The superconducting accelerator of the European XFEL consists of the injector part and the main linac. The injector includes one 1.3 GHz accelerator module and one 3.9 GHz third-harmonic module, while the main linac will consist of 100 accelerator modules, operating at an average design gradient of 23.6 MV/m. The fabrication and surface treatment by industry as well as RF acceptance tests of the required 808 superconducting 1.3 GHz cavities are close to an end by the time of SRF15. The accelerator module assembly, testing and installation in the tunnel is in full swing. First steps of commissioning have been made. The status and results of cavity and module RF tests at 1.3 GHz and 3.9 GHz are presented.  
slides icon Slides MOAA02 [2.903 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB079 Analysis of the Test Rate for European XFEL Series Cavities 316
 
  • J. Schaffran, S. Aderhold, D. Reschke, L. Steder, N. Walker
    DESY, Hamburg, Germany
  • L. Monaco
    INFN/LASA, Segrate (MI), Italy
 
  The main part of the superconducting European XFEL linear accelerator consists of 100 accelerator modules each containing eight RF-cavities. Before the installation to a module, all of these cavities will be tested at cryogenic temperatures in a vertical cryostat in the accelerator module test facility (AMTF) at DESY. This paper discusses the average vertical test rate at the present status. It should be 1 in the ideal case, but actually it’s observed to be approximately 1.5. Classification and analysis concerning the reasons for this deviation are given as well as suggestions for a reduction of the test rate for future production cycles.  
poster icon Poster MOPB079 [0.632 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB080 Update and Status of Test Results of the XFEL Series Accelerator Modules 319
 
  • M. Wiencek, K. Kasprzak, A. Zwozniak
    IFJ-PAN, Kraków, Poland
  • D. Kostin, D. Reschke, N. Walker
    DESY, Hamburg, Germany
 
  The European X-ray Free Electron Laser is under construction at DESY, Hamburg. During preparation for tunnel installation 100 Cryomodules are tested in a dedicated facility on the DESY campus. Up to now around 50 cryomodules have been measured at 2K. This paper describes the current status of the measurements, especially single cavity limitations. In addition we present a comparison between the vertical test results of the individual cavities and the corresponding performance measurements of the cavities once assembled into the accelerator string inside the cryomodule.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB086 Update and Status of Vertical Test Results of the European XFEL Series Cavities 337
 
  • N. Walker, D. Reschke, J. Schaffran, L. Steder
    DESY, Hamburg, Germany
  • L. Monaco
    INFN/LASA, Segrate (MI), Italy
  • M. Wiencek
    IFJ-PAN, Kraków, Poland
 
  The series production by two industrial vendors of the 800 1.3-GHz superconducting cavities for the European XFEL has been on-going since the beginning of 2013 and will conclude towards the end of this year. As of publication some 740 cavities (~93%) have been produced at an average rate of 6 cavities per week. As part of the acceptance testing, all cavities have undergone at least one vertical RF test at 2K at the AMTF facility at DESY. The acceptance criterion for module assembly is based on the concept of a “usable gradient”, which is defined as the maximum field taking into account Q0 performance and allowed thresholds for field emission, as well as breakdown limits. Approximate 20% of the cavities have undergone further surface treatment in the DESY infrastructure to improve their usable gradient performance. In this paper we present the performance statistics of the vertical test results, as well as an analysis of the limiting criteria for the usable gradient, and finally the impact of the surface retreatment on both usable gradient and Q0.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB090 Analysis of Degraded Cavities in Prototype Modules for the European XFEL 355
 
  • S. Aderhold
    Fermilab, Batavia, Illinois, USA
  • S. Aderhold, D. Kostin, A. Matheisen, A. Navitski, D. Reschke
    DESY, Hamburg, Germany
 
  In-between the fabrication and the operation in an accelerator the performance of superconducting RF cavities is typically tested several times. Although the assembly is done under very controlled conditions in a clean room, it is observed from time to time that a cavity with good performance in the vertical acceptance test shows deteriorated performance in the accelerator module afterwards. This work presents the analysis of several such cavities that have been disassembled from modules of the prototype phase for the European XFEL for detailed investigation like additional rf tests, optical inspection and replica.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB039 XFEL Database User Interface 1168
 
  • S. Yasar, P.D. Gall, V. Gubarev, D. Reschke, A.A. Sulimov, J.H. Thie
    DESY, Hamburg, Germany
 
  The XFEL database plays an important role for an effective part of the quality control system for the whole cavity production and preparation process for the European XFEL on a very detailed level. Database has the Graphical User Interface based on the web-technologies, and it can be accessed via low level Oracle SQL.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB056 SRF Gun Cavity R&D at DESY 1231
 
  • D. Kostin, C. Albrecht, A. Brinkmann, Th. Buettner, J. Eschke, T. Feldmann, A. Gössel, D. Klinke, A. Matheisen, W.-D. Möller, D. Reschke, M. Schmökel, J.K. Sekutowicz, W. Singer, X. Singer, N. Steinhau-Kühl, J. Ziegler, B. van der Horst
    DESY, Hamburg, Germany
  • M. Barlak, J.A. Lorkiewicz, R. Nietubyć
    NCBJ, Świerk/Otwock, Poland
 
  SRF Gun Cavity is an ongoing accelerator R&D project at DESY, being developed since several years. Currently several SRF Gun cavity prototypes were simulated, built and tested in our Lab and elsewhere. Lately the 1.6 cells Pb thin film cathode niobium cavity was tested in a vertical cryostat with a different cathode plug configurations. Cathode plug design was improved, as well as SRF Gun Cavity cleaning procedures. Results of the last cavity performance tests are presented and discussed.  
poster icon Poster THPB056 [1.257 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)