Paper | Title | Page |
---|---|---|
TUPB074 | High-Vacuum Simulations and Measurements on the SSR1 Cryomodule Beam-Line | 754 |
|
||
Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DEAC02- 07CH11359 with the United States Department of Energy In order to guarantee an effective cool-down process for the SSR1 cryomodule, a high-vacuum level must be achieved at room temperature in the beam-line before introducing gaseous and liquid helium. The SSR1 cavities in the beamline have a small beam aperture compared to the size of their internal volume. To avoid unnecessary complications for the vacuum piping of the cryomodule cold-mass, a pilot study was conducted on the string prior to processing and qualification of the components to investigate the vacuum level achievable by pumping only through the beam-line. To estimate the pressure distribution inside the cavity string we used a mathematical model implemented in a test-particle Monte-Carlo simulator for ultra-high-vacuum systems. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB061 | Performance of the Tuner Mechanism for SSR1 Resonators During Fully Integrated Tests at Fermilab | 1252 |
|
||
In the framework of the Proton Improvement Plan-II (PIPII) at Fermilab, a cavity tuner was developed to control the frequency of 325 MHz spoke resonators (SSR1). The behavior of the tuner mechanism and compliance with technical specifications were investigated through a campaign of experimental tests in operating conditions in the spoke test cryostat (STC) and at room temperature. Figures of merit for the tuner such as tuning range, stiffness, components hysteresis and overall performance were measured and are reported in this paper. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |