Author: Hanus, X.
Paper Title Page
TUPB007 Progress in the Elliptical Cavities and Cryomodule Demonstrators for the ESS LINAC 544
 
  • F. Peauger, C. Arcambal, S. Berry, N. Berton, P. Bosland, E. Cenni, J.-P. Charrier, G. Devanz, F. Éozénou, F. Gougnaud, A. Hamdi, X. Hanus, P. Hardy, V.M. Hennion, T. Joannem, F. Leseigneur, D. Loiseau, C. Madec, L. Maurice, O. Piquet, J. Plouin, J.P. Poupeau, B. Renard, D. Roudier, P. Sahuquet, C. Servouin
    CEA/DSM/IRFU, France
  • C. Darve, N. Elias
    ESS, Lund, Sweden
  • G. Olivier
    IPN, Orsay, France
 
  The European Spallation Source (ESS) accelerator is a large superconducting linac under construction in Lund, Sweden. A collaboration between CEA Saclay, IPN Orsay and ESS-AB is established to design the elliptical cavities cryomodule of the linac. It is foreseen to build and test two cryomodule demonstrators within the next two years. We present the design evolution and the fabrication status of the cryomodule components housing four cavities. The latest test results of two prototype cavities are shown. The cryomodule assembly process and the on-going testing infrastructures at CEA Saclay are also described.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB028 ESS Medium Beta Cavity Prototypes Manufacturing 1136
 
  • E. Cenni, C. Arcambal
    CEA/IRFU, Gif-sur-Yvette, France
  • P. Bosland, G. Devanz, X. Hanus, P. Hardy, V.M. Hennion, F. Leseigneur, F. Peauger, J. Plouin, D. Roudier
    CEA/DSM/IRFU, France
  • G. Costanza
    Lund University, Lund, Sweden
  • C. Darve
    ESS, Lund, Sweden
 
  The ESS elliptical superconducting linac consists of two types of 704.42 MHz cavities, medium and high beta, to accelerate the beam from 216 MeV (spoke cavity linac) up to the full energy at 2 GeV. The last linac optimization, called Optimus+, has been carried out taking into account the limitations of SRF cavity performance (field emission). The medium and high-beta parts of the linac are composed of 36 and 84 elliptical cavities, with geometrical beta values of 0.67 and 0.86 respectively. We describe here the procedures and numerical analysis leading from half-cells to a complete medium cavity assembly, which take into account not only the frequency of the fundamental accelerating mode but also the higher order modes near the machine line. The half cell selection process to form dumb bells will be described, as well as the reshaping and trimming procedure.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)