Author: Drury, M.A.
Paper Title Page
MOPB033 LCLS-II SRF Cavity Processing Protocol Development and Baseline Cavity Performance Demonstration 159
 
  • M. Liepe, P. Bishop, H. Conklin, R.G. Eichhorn, F. Furuta, G.M. Ge, D. Gonnella, T. Gruber, D.L. Hall, G.H. Hoffstaetter, J.J. Kaufman, G. Kulina, J.T. Maniscalco, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M. Checchin, A.C. Crawford, A. Grassellino, C.J. Grimm, A. Hocker, M. Martinello, O.S. Melnychuk, J.P. Ozelis, A. Romanenko, A.M. Rowe, D.A. Sergatskov, W.M. Soyars, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
  • E. Daly, G.K. Davis, M.A. Drury, J.F. Fischer, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.C. Ross
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported, in part, by the US DOE and the LCLS-II Project under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-76SF00515.
The ”Linac Coherent Light Source-II” Project will construct a 4 GeV CW superconducting RF linac in the first kilometer of the existing SLAC linac tunnel. The baseline design calls for 280 1.3 GHz nine-cell cavities with an average intrinsic quality factor Q0 of 2.7·1010 at 2K and 16 MV/m accelerating gradient. The LCLS-II high Q0 cavity treatment protocol utilizes the reduction in BCS surface resistance by nitrogen doping of the RF surface layer, which was discovered originally at FNAL. Cornell University, FNAL, and TJNAF conducted a joint high Q0 R&D program with the goal of (a) exploring the robustness of the N-doping technique and establishing the LCLS-II cavity high Q0 processing protocol suitable for production use, and (b) demonstrating that this process can reliably achieve LCLS-II cavity specification in a production acceptance testing setting. In this paper we describe the LCLS-II cavity protocol and analyze combined cavity performance data from both vertical and horizontal testing at the three partner labs, which clearly shows that LCLS-II specifications were met, and thus demonstrates readiness for LCLS-II cavity production.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB113 JLab Cryomodule Assembly Infrastructure Modifications for LCLS-II 898
 
  • E. Daly, J. Armstrong, G. Cheng, M.A. Drury, J.F. Fischer, D. Forehand, K. Harding, J. Henry, K. Macha, J.P. Preble, A.V. Reilly, K.M. Wilson
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515.
The Thomas Jefferson National Accelerator Facility is currently engaged, along with several other DOE national laboratories, in the Linac Coherent Light Source II project (LCLS II). The SRF Institute at Jefferson Lab will be building 1 prototype and 17 production cryomodules based on the TESLA / ILC / XFEL design. Each cryomodule will contain eight nine cell cavities with coaxial power couplers operating at 1.3 GHz. New and modified infrastructure and assembly tooling is required to construct cryomodules in accordance with LCLS-II requirements. The approach for modifying assembly infrastructure included evaluating the existing assembly infrastructure implemented at laboratories world-wide in support of ILC and XFEL production activities and considered compatibility with existing infrastructure at JLab employed for previous cryomodule production projects. These modifications include capabilities to test cavities, construct cavity strings in a class 10 cleanroom environment, assemble cavity strings into cryostats, and prepare cryomodules for cryogenic performance testing. This paper will give a detailed description of these modifications.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)