Paper | Title | Page |
---|---|---|
TUPB007 | Progress in the Elliptical Cavities and Cryomodule Demonstrators for the ESS LINAC | 544 |
|
||
The European Spallation Source (ESS) accelerator is a large superconducting linac under construction in Lund, Sweden. A collaboration between CEA Saclay, IPN Orsay and ESS-AB is established to design the elliptical cavities cryomodule of the linac. It is foreseen to build and test two cryomodule demonstrators within the next two years. We present the design evolution and the fabrication status of the cryomodule components housing four cavities. The latest test results of two prototype cavities are shown. The cryomodule assembly process and the on-going testing infrastructures at CEA Saclay are also described. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB028 | ESS Medium Beta Cavity Prototypes Manufacturing | 1136 |
|
||
The ESS elliptical superconducting linac consists of two types of 704.42 MHz cavities, medium and high beta, to accelerate the beam from 216 MeV (spoke cavity linac) up to the full energy at 2 GeV. The last linac optimization, called Optimus+, has been carried out taking into account the limitations of SRF cavity performance (field emission). The medium and high-beta parts of the linac are composed of 36 and 84 elliptical cavities, with geometrical beta values of 0.67 and 0.86 respectively. We describe here the procedures and numerical analysis leading from half-cells to a complete medium cavity assembly, which take into account not only the frequency of the fundamental accelerating mode but also the higher order modes near the machine line. The half cell selection process to form dumb bells will be described, as well as the reshaping and trimming procedure. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB046 | Design and Development of Superconducting Spoke Cavity for Compact Photon Source | 1196 |
|
||
Funding: This study is supported by Photon and Quantum Basic Research Coordinated Development Program of MEXT, Japan. The spoke cavity is expected to have advantages for compact ERL accelerator for X-ray source based on laser Compton scattering. We have been developing the spoke cavity under a research program of MEXT, Japan to establish the fabrication process. Since our designed shape of the spoke cavity is complicated due to increase the RF properties, we have been designing the mold including the process of press work and the support parts for vacuum tolerance with the mechanical simulation. In this paper we present status of the spoke cavity fabrication. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |